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Niels Henrik David Bohr (7 October 1885 — 18 November 1962) was a Danish physicist
who made fundamental contributions to understanding atomic structure and quantum
mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr mentored and
collaborated with many of the top physicists of the century at his institute in Copenhagen.
He was part of a team of physicists working on the Manhattan Project. Bohr married
Margrethe Norlund in 1912, and one of their sons, Aage Bohr, grew up to be an
important physicist who in 1975 also received the Nobel prize. Bohr has been described
as one of the most influential scientists of the 20th century.

http://en.wikipedia.org/wiki/NielsBohr

Erwin Rudolf Josef Alexander Schrodinger (12 August 1887— 4 January 1961) was an
Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is
famed for a number of important contributions to physics, especially the Schrodinger
equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after
extensive correspondence with personal friend Albert Einstein, he proposed the
Schrodinger's cat thought experiment.



http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger

1. Orbital angular momentum in quantum mechanics

The orbital angular momentum is defined as
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2. Quantum mechanical orbital angular momentum: spherical coordinates



The orbital angular momentum in the quantum mechanics is defined by
L=rxp=—ii(rxV)
using the expression
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in the spherical coordinate. Then we have
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The angular momentum L, Ly, and L, (Cartesian components) can be described by
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We note that the operator V can be expressed using the operator L as
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The proof of this equation is given as follows.
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where the definition of pr is given below. This expression can be rewritten as
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3. Radial momentum operator p, in the quantum mechanics
(a) In classical mechanics, the radial momentum of the radius r is defined by

1
prc = _(r : p)
r



(b) In quantum mechanics, this definition becomes ambiguous since the component
of p and r do not commute. Since pr should be Hermitian operator, we need to
define as the radial momentum of the radius r is defined by
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This symmetric expression is indeed the canonical conjugate of 1.
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For convenience we use
peq = pr

then we have
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4. Central field problem
Free particle wave function i satisfies the Schrodinger equation

2
v vy = By,
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where u is the reduced mass of particle, E is the energy eigenvalue of the system. The
wavefunction can be expressed by

Y = Pun(r,0,9)
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(separation variables),
Do (1,0,9) = R, (N)Y,,(6,4)
with
LY, (0,9) = 1*((L + 1Y, (0, 9)
LY (6,¢) = hmY,,(6,9)

Note that Y, (6,¢) is the spherical harmonics.
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Note that for a fixed |, the energy eigenvalue is independent of m, and is at least (21+1)-

fold degenerate.

We assume that
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We further assume a Coulomb potential given by
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5. Series expansion method

Solution of radial part of the hydrogen atom (we need to show that 4 = n; positive
integer)

oA+ a4 1
L D2 =0 m
do p p 4

[
with
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,ZL , which corresponds to the eigenvalue.
81

Note that according to the Bohr model, 4 = n (positive integer) since

_k222/184 B ke2 ZZ

! 2n*n*  2an®

We solve the differential equation to determine the eigenvalue and eigenfunction. In the
limit of p— 0, we assume that it behaves at the origin like

u~p
[s—1)=I(1+1)]p" >+ Ap" ' - ips =0
Note that the p5-2 term dominates for small p.
ss-DH-1(1+1)=0,
or
s—/-1)(s+hH=0
s=l+1lors=-1.
We must discard those solutions that behave as p'. So we get the form around p = 0:

u(p) = p'"

In the limit of p— o,
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d> 1
(d—pz—z)u(p) =0

The solution for this equation is
u(p) = Ae™”’* + Be”'?

The constant B should be equal to zero (p— ®):

-p/2

u(p)~e

Thus we can attempt to find a solution of the form

u(p)=p"'e”"*F(p)
With this substitution, the differential equation (1) becomes

2
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do p p

We assume that
F(p)=2.Cp'
k=0
with CO ;é 0.

i k(k—1)C 3o +i(2| +2)KC, 0" + i[—k T A—(+D)ICI A =0
k=2 o1 -

k=0

or
i{k(kﬂ) + 21 +2)(k+DIC,., +[-k+A-(1+DICIp "' =0
k=0

leading to
Coy  k+l+1-2
C. (K+1)(Kk+21+2)

((Note))
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Coefficient of p0
-1-1+1)C,+(2+21C, =0
Coefficient of p!
(2-1+4)C,+2(3+2IC, =0
Coefficient of p?
(-3-1+2)C,+3(4+2I)C, =0
Coefficient of p3
(-4-1+1)C,+4(5+21)C, =0
Coefficient of p*
(=5—1+ A)C, +5(6+21)C, =0
Coefficient of p°

(-6-1+A)C,+6(7+21)C, =0

which is the same asymptotic behavior as eP. Thus, unless the series terminate, U(p) will
grow exponentially like e272,

To avoid this, we must have
Fork=n,
n+1+1-4=0

or
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A=n+1+1

Then we have

C,.,=C

nr+l1 n+2

Forn,=0, A =1+1
F(p)=C,
Forn,=1, A =1+2
F(p)=C,+Cp
Forn,=2,A=1+3
F(p)=C,+C,p+C,p

The function F will thus be a polynomial of degree of n., known as an associated
Laguerre polynomial.

2
/lzkzi L:I+1+nr
h | 2E|
or
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T 2R+ 1+ n,)

Since =0, 1, 2, 3,...,n, =0, 1, 2,..., we introduced a principal quantum number n,
defined by

n=Il+1+n,
withn=1, 2, 3, .... Thus, in terms of n,

_ kKzZhet  ke’Z?

" 2n’n?  2an?
n=1,n=0,1=0 (1s)
n=2,n=0,1=1 (2p)
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n=2,n=11=0 (2s)
n=3n=0,1=2 (3d)
n=3n=11=1 (3p)
n=3n=2,1=0 (3s)

=4,n,=0,1=3 (49)
n=4,n=1,1=2 (4d)
n=4,n=2,1=1 (4p)
n=4,n=3,1=0 (4s)
n=5n=0,I=4 (5g)

=5n=11=3 (5)
n=5n=2,1=2 (5d)
n=5n=31=1 (5p)

=5n=4,1=0 (5s)

These |nIm) states have the same energy which is only dependent on n.

6. Spherical harmonics Y, (0, ¢)

I‘zYIm (07 ¢) ==

h o

op

YIm (95 ¢) = thIm (97 ¢)

The fand ¢ dependence of Y,"(6,¢) is given by

L2Y,"(8,¢) = —1°

Equation (1) show

152

1

[sin2 0 &gﬁz

—( sin 9—)]Y (0.9)

sin@ 0

=121+ 1)Y," (0, 4)

s that
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Y,"(0.¢) =07 (9)e"™

where Y,"(6,¢) is normalized as

8O = [V (0. 9)Y,"(0.9) = [[sin APV, (0.6)Y,"(6.4)

where 21is a solid angle and dQ =sin@d@d¢. We must require that the eigenfunction be
single valued

img im(¢+27)

e =€

which means that m =0, £1, £2, (integers). Equation (2) can be rewritten as

1 m’ m
[sneag@le——o -~ +K|+DK)(9) 0

The result for m>0 is

Y\"(0.4) =

D' @I+ d+m)! g, 1 d-m (sin0)”
2'I! 47 (I-m)!  sin" 0 d(cos®)™

and we define Y, " (0, §) by

Y "6, )= (D)"Y, (0,41

or
[Y,"(0,9)] = (=D"Y, " (9,9)

7. Quantum numbers
n: the principal quantum number.
I the azimuthal quantum number
m: the magnetic quantum number

For the fixed n (=1, 2, 3,4, ...),
| =n-1,n-2.,....... ,1,and 0.

=0 sharp (S)
m=20
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| =1 principal (9)
m=1,0,-1

| =2 diffuse (d)
m=2,1,0,-1, -2

| =3 fundamental (H
m=3,2,1,0,-1,-2,-3

| =4 )
m=4,3,2,1,0,-1,-2,-3,-4

There are (21+1) solutions to the Schrodinger equation corresponding to the same energy
eigenvalue E,.

n-1 _
Degeneracy of E, = ) (21 +1) = 2n(nTl) +n=n’.

1=0

((Note)) Including spin degeneracy of states is 2n”.

n I m m;
Is 1 0 0 +1/2
2s 2 0 0 +1/2
2p 2 1 0, +1 +1/2
3s 3 0 0 +1/2
3p 3 1 0, +1 +1/2
3d 3 2 0,+1,,+£2 +1/2
4s 4 0 0 +1/2
4p 4 1 0, +1 +1/2
4d 4 2 0,+1,,+2 +1/2
4f 4 3 0,+1,,+2, £3 +1/2
8. Vector model of the orbital angular momentum

We consider a case which | is some fixed number (I = 1, 2, 3,...). Then the total
angular momentum may be represented by a vector of length

A1 +1)

The component M in the z direction is

The vector J should be thought of as covering a cone, with vector angle given by
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m

LA +1)

cos@, =

where 6, is the angle between the z axis and L.
(a)

=1
(b)

=3
m=3,2,1,0,-1,-2,-3
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9. SphericalPlot3D of ’Y,m(9,¢)‘2
We make a SphericalPlot3D of the spherical harmonics.

0
=0 m=0  Y,’,(6.9)



i) m=-1,0,1

I=1 m Y, (6,9)
1 Leio | 3 gsj
1 -1 , © > Sin[o]

I=1, m==1 I=1,m=0

(i) m=-2,-1,0,1,2
=2 m Y%, (0,4)
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(1+3Cos[209])

2,m=+1

2, m=+2

-1,0,1,2,3

b

3,-2

m:_

(iv)

3 (99 ¢)

Yo

21



30 L %(3Cos[e]+5Cos[3@])

=3, m=4+3 =3, m==£2 =3 m=x=+l =3, m

10.  SphericalPlot of 2p orbitals
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p-orbitals

[-Y ! (@Y (6.0)]

1
pxT %

Y

Upy=i g5 [Y1 @1+ 0.0)]

Up=Y L(6.9)

px orbit
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out[53]=

11.  SphericalPlot of 3d orbitals
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de-orbitals

=i 75 [Y70.0)-Y52(0.0)]
Uyr=i 75 Y304+ Y37(0.9)]

V=5 [Y309)- Y5 (0.4)]
dy-orbitals

V2 p=75 V3001V 0.0)]

Uy 0 2=Y360)

duxy) orbit
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Y

de(32°-r?) orbit

12.  The form of radial wave function Rp(r)
The radial wave function Ry (r) is given by

Ry (N =u, (N =Ae""p"""" (p),

27



where
P =2kT.

[hen we have
I (AP + + +
Rm( ) nl( ) - e p/2 | 1Iil,|11( ) 2 AKe -p/2 ||2I 1 [ )

A is determined from the condition of normalization.

Il
o= 8

A o
[Ry(nF'ridr =—— [erp [ ()T dp,
0
Here we use the formula:

j e L (AL (o =

(pr) @2p+q-+1)

Note that
p=n-l-1,9g=2l1+1, p+g=n+l,and 2p+q+1=2n

Then we have

2042 0y 2041 1!
e o 1L (T op =TI

) (n |—1)ﬁ2n)

Using this formula, Eq.(2) can be rewritten as

:iz (n+h! (2n)
26 (n—1-1)!

or

A Z"* |(n—1-1)!

(n+1)!

Thus we get

Ri(N=Ry(p) = A’ o1 ()
with
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277 [(n=1-=1)!
A = n*a*? \/ (n+1!

((Note)) The final form of R (r) is as follows.

since

2z,
» na

This function satisfies the differential equation

2
¢ 2d 1 n_ |(|+1)

)R, (p)=0.

We also have

Zl/2 (n—1-1! g2 pl 2
Uy (1) =y (P) = ,/ (n+,), Lot (P)

13.  Radial probability
The wave function y,,(r) is normalized as

1= [m(r]drdr
where €2is the solid angle and dQ = sin & 6dg

Yo (1) =Ry (NY,"(6,4)
and

1= [drr?Ry (0] [y @.¢) = [dre?|R, (r)]
where
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[aqv .0 =1

We define P.dr as
Pdr=r*|R (r)] dr

Then the average <rs> is defined by

<r’>= Tdrrz[Rn,(r)]zrs = Tdrrs*z[Rn,(r)]2

where
h2
a= 5
ke
2
E - kZ(za
2n-a

The average <rs> is obtained as

> Z4[3n2 =11 +1)]
n%a*l(1+1/2)1 + D211 +1)—3/2]
r‘3>: Z
n*al(l+1/2)(1 +1)
)
)

22

2

(1) =5 Isn* +1-31(1+ 1)
<

3

n*[35n* +3(1 = DI + 1)(1 +2) = 5n>(6l(1 + 1) = 5)]

Z3

14, Form of the wave function
We use the radial wave function as
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2732 [(n 1 )
Ru (1) =Ry (p) == na’? ((n+|)')ﬂ P/Z L %1' |11

where

2Zr
na

(p)

(@)  Expression of R (r)

n=1
Z 3/2 Zr
Rm(r) = Z(EJ exp(—?)
n=2
1 Z 3/2 Zr Zr
Ry(N=—=|=] (1-=")exp(-—
5(1) \/E(aj ( 2a)exp( 2a)
1 (7 3/2 7r 7r
R.(N=—|=| = _L4r
(1) 2\/6(8.} . exp( 2a)
n=3

27r 27°%r?

2 Z 3/2
Ro(N =777 -7+ ex
(D) 3@[61) ( 3a  27a’ )exp

r
(—g)

g (7Y 7 7r .
R,(N=——=] =(-")exp(—=—
0 27%(«'1) a U6 ™3y

YA Z
32() 81\/_( j a (__)

(b)  Expression of R (p)
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Ry () = 2@ exp(-2)

n=2
Ruy () = ﬁ@(z - pexp(-2)
Ry (1) =ﬁ[§fupexp<—§)
n=3
Ry (1) =%(§j3/2(6—6p+p2)exp(—§)
R.(1) =ﬁ(§)mp(4—mexp(—§>

L (ZYE L e
R32(r)_9\/%(aj P~ exp( 2)

15. Plot of the probability of the wave function and the average radius

(1) r’[R,(NT vsr/a, where a=1and Z=1.

(ii) < r>:%[3n2—l(l +1)], wherea=1landZ=1.

For the 1s state,
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Pr
0.5} :>/a

04+ n=1

0.1r

0.0/ ‘ ‘ ‘ ‘ ‘ ' tfa
0 1 2 3 4 5 6 7

Fig. 1s(n=1,1=0). The straight line denotes the average value (<r>/a).

For the 2s, 2p states
Pr

0201
0.15

0.10]-

0.05/\
0.00L—.

Fig. 2s(n=2,1=0).2p (n=2,1=1). The straight lines denote the average value
(<r>/a).

r/a

14

For the 3s, sp, and 3d states,
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Pr

0.14]

0.04

0.02

0.00

0.12f
0.10
0.08}

0.06 |

AN

n=3

wmuy

/

J

10

15

Fig. 3s(n=3,1=0).3p(n=3,1=1).3d (n=3, | =2). The straight lines denote the
average value (<r>/a).

For the 4s, 4p, 4d, and 4f states,

Pr

0.10}
0.08
0.06
0.041
0.02-

4
YN,

0.00
0

n=4

m]/
N —=/O

5

20

25

r/a

Fig. 4s(n=4,1=0).4p(n=4,1=1).4d (n=4,1=2). 4f (n=4, | = 3). The straight
lines denote the average value (<r>/a).

16. ContourPlot of the wavefunctions (Mathematica)

The probability function |l//n|m(r,9,¢)|2 is expressed using the spherical co-ordinate (T,

0, ).
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m 2
W an1.0.0) =Ry (N)Y,"(6.9)
where
(n_l_l) |+1 —-1-3/2 |+3/2 —-1-2 2|+1 27
R,(r= a Z r' exp(—— p=—r
nl( ) (n+|)' Xp( ) n—-1-1 na )

Using the relations

r=+x*+y>+2>, @ =arccos __r , ¢ = arctan(l)
VX +y + 77 X

the function can be expressed by the Cartesian co-ordinate. Here we assume that

Z =1, u=m (mass of electron), and a = a, (Bohr radius).

() dy (zx) orbit

150

10
i/‘

{n-3,1-2,yz, {X, 0, z}}
)
—-10} @
—15t

—-15 -10 -5 0 5 10 15

(b)  de(32°-r*) orbit
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{n -3,1 52,932 -2, {X, Y, 0}}

(=}
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|
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APPENDIX

Vector analysis in the Spherical co-ordinates:

(@ Vy
The gradient is given by
Vy=¢e aV/+e Loy e L oy

r A ' C0 T
or r oo rsiné o¢

where /s a scalar function of r, 6, and 4.

(b) V-A
The divergence is given by

Y
rsiné o¢

L2 ey

V-A=— ,
reor rsin@

o, .
%(sm&%) +
(© VxA

36




V x A is given by

he, he, he, e, re, rsinée,
1 |0 0 0 1 (0 0 0

hhh|or 00 0¢| rsin@lor 00  og

iy

hA hA, hA, A A, TsinA,

VxA=

(d) Laplacian

“hhhor hoar’ 60 h, 00" o4 h, og
oy
)]

119 sin0 Y+ sing ¥y 2LV
r’sing or or’ " a0 00’ " 34 sind o

h,h h,h
vy =L (LA, 0N, O 0OV,

or

1 oy
r’sin® @ o¢’

1 0
2

oy 1 o ,. 0y
Viy=——(r"-)+ 0—)+
v r ar( ﬁr) (sin 86)

r’sind 06
We can rewrite the first term of the right hand side as

10 ,op. 10
— 2 (r* =) =——"(r
r? ar( ar) rﬁrz()

which can be useful in shortening calculations.

Note that we also use the expression for the operator

2
szizi(rzi + 21. i(sin@i)+ 5 .12 62:
r-or or r°siné o6 00" r7sin" 0 0¢
iﬁ(r2ﬁ)+l 1 © 1 0

1l 0 gingyi 1 O
r’or or  r’ sin@ o0 00" *sin’ @ o¢’
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