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________________________________________________________________________ 
Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in 
Ascona, Switzerland) was a German physicist known for development of quantum 
mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel–
Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray 
spectroscopy, but then broadened out to make contributions to quantum mechanics, 
quantum electrodynamics, and meson theory. 
http://en.wikipedia.org/wiki/Gregor_Wentzel 
________________________________________________________________________ 
Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 
24, 1952) was a Dutch physicist. 
http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers 
________________________________________________________________________ 
Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He 
made contributions to quantum mechanics, radio wave propagation in the atmosphere, 
solid state physics, and information theory. 
 

 
http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin 
 
 
 
WKB approximation 

This method is named after physicists Wentzel, Kramers, and Brillouin, who all 
developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general 
method of approximating solutions to linear, second-order differential equations, which 
includes the Schrödinger equation. But even though the Schrödinger equation was 
developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of 
this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics 
contain any number of combinations of their initials, including WBK, BWK, WKBJ, 
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JWKB and BWKJ. The important contribution of Jeffreys, Wentzel, Kramers and 
Brillouin to the method was the inclusion of the treatment of turning points, connecting 
the evanescent and oscillatory solutions at either side of the turning point. For example, 
this may occur in the Schrödinger equation, due to a potential energy hill. 
(from http://en.wikipedia.org/wiki/WKB_approximation) 
 
________________________________________________________________________ 
1. Classical limit 

Change in the wavelength over the distance x  
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which is the criterion of the classical behavior. 
 
2. WKB approximation 

The quantum wavelength does not change appreciably over the distance of one 
wavelength. We start with the de Broglie wave length given by 
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Then we get 
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If dV/dx is small, the momentum is large, or both, the above inequality is likely to be 
satisfied  
 
Around the turning point, p(x) = 0. |dV/dx| is very small when V(x) is a slowly changing 
function of x. 
 
Now we consider the WKB approximation, 
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If the potential V is slowly varying function of x, we can assume that 
 

)(
)(

xS
i

Aex  , 
 

.....)(
!3

)(
!2

)(
!1

)()( 3

3

2

2

10  xSxSxSxSxS


. 

 
____________________________________________________________________ 
((Mathematica)) 
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WKB approximation
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For each power of ħ, we have 
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Then the WKB solution is given by 
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The wave function has the form 
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where we put 
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3. The probability current density  
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We now consider the case of B = 0. 
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4. WKB approximation near the turning points 

We consider the potential energy V(x) and the energy  shown in the following figure. 
The inadequacy of the WKB approximation near the turning point is evident, since 

0)( xk implies an unphysical divergence of )(x .  
 
(a) V(x): increasing function of x around the turning point x = a 
 
 



8 
 

Vx

x
aO

E
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(b) V(x): decreasing function of x around the turning point 
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(i) For x<<b where V(x)>, 
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_______________________________________________________________________ 
5. Exact solution of wave function around the turning point x= a 
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The Schrödinger equation is given by 
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where  is the energy of a particle with a mass m. We assume that 
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The solution of this equation is given by 
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where we use 2C1 instead of C1. The asymptotic form of the Airy function Ai(z) for large 
|z| is given by 
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Fig. Plot of the Ai(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
 
The asymptotic form of the Airy function Bi(z) for large |z|, 
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Fig. Plot of the Bi(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
Here we note that 
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For z>0,  
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______________________________________________________________________ 
6. Connection formula (I; upward) 
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(ii) The asymptotic form for z>0; 
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The we have the connection rule (I; upward) as follows. 
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where C1 = A and C2 = B. 
 
______________________________________________________________________ 
7. Exact solution of wave function around the turning point x= b 
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The Schrödinger equation is given by 
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where   is the energy of a particle with a mass m. We assume that  
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The solution of this equation is given by 
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__________________________________________________________________ 
8. Connection formula-II (downward) 

The asymptotic form for z<0; 
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The asymptotic form for z>0; 
 

)])(exp(
)(

1

))(exp(
)(

1
[

2

)()(2

2

1

6/1

2
2/1

4/12/1
2

4/12/1
121





















b

x

b

x

ii

dxx
x

C

dxx
x

C
mg

ezCezCzBCzAC









 


 

 
Then we have the connection formula (II; downward) as 
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where C1 = A and C2 = B. 
 
9. Tunneling probability 

We apply the connection formula to find the tunneling probability. In order that the 
WKB approximation apply within a barrier, it is necessary that the potential V(x) does not 
change so rapidly. Suppose that a particle (energy  and mass m) penetrates into a barrier 
shown in the figure. There are three regions, I, II, and III. 
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Fig. The connection formula I (upward) is used at x = a and the connection formula II 

(downward) is used at x = b. 
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(we consider on the wave propagating along the positive x axis), where 
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The connection formula (II, downward) is applied to the boundary between the regions 
III and II. 
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Here we get 
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Next, the connection formula (I; upward) is applied to the boundary between the regions 
II and I. 
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Here we get 
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The first term corresponds to that of the reflected wave and the second term corresponds 
to that of the incident wave. Then the tunneling probability is 
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9. -particle decay: quantum tunneling 
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Fig. Gamov's model for the potential energy of an alpha particle in a radioactive 

nucleus. 
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Fig. The tunneling of a particle from the 238U (Z = 92). The kinetic energy 4.2 MeV. 

http://demonstrations.wolfram.com/GamowModelForAlphaDecayTheGeigerNutt
allLaw/ 
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where m is the mass of -particle (= 4.001506179125 u). fm = 10-15 m (fermi). 

The quantity P gives the probability that in one trial an  particle will penetrate the 
barrier. The number of trials per second could estimated to be 
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if it were assumed that a particle is bouncing back and forth with velocity v inside the 
nucleus of diameter 2r1. Then the probability per second that nucleus will decay by 
emitting a particle, called the decay rate R, would be 
 

2

12
 e

r

v
R  

 
((Example)) 

We consider the  particle emission from 238U nucleus (Z = 92), which emits a K = 
4.2 MeV  particle. The a particle is contained inside the nuclear radius r1 = 7.0 fm (fm = 
10-15 m).  
 
(i) The distance r2: 
From the relation 
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we get 
 

r2 = 63.08 fm. 
 
(ii) The velocity of a particle inside the nucleus, v: 
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From the relation 
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where m is the mass of the a particle; m = 4.001506179 u, we get 
 

v = 1.42318 x 107 m/s 
 
(iii) The value of : 
 

])(arccos[
2

121
2

1
2 rrr

r

r
r

mK



 =51.8796 

 
(iv) The decay rate R: 
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((Mathematica)) 
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Clear"Global`";

rule1  u  1.660538782 1027, eV  1.602176487 1019,

qe  1.602176487 1019, c  2.99792458 108,

—  1.05457162853 1034, 0  8.854187817 1012,

MeV  1.602176487 1013, Ma  4.001506179125 u,

fm  1015, Z1  92, r1  7 fm , K1  4.2 MeV;

eq0  K1 
2 Z1 qe2

4  0 r
. rule1

6.729141013 
4.245021026

r

eq01  Solveeq0, r; r2  r . eq011
6.308421014

r2

fm
. rule1

63.0842

eq1 
1

2
Ma v2  K1 . rule1; eq2  Solveeq1, v;

v1  v . eq22
1.42318107

 
2 Ma K1

—
r2 ArcCos r1

r2
  r1 r2  r1 .

rule1

51.8796

R1 
v1

2 r1
Exp2  . rule1

8.812821025
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9. Bound state 
 

ab

I II III

Vx

E

 
 
For x<b (region I), the unnormalized wave function is 
 

))(exp(
)(

1

b

x

I dxx
x




 , 

 
Using the connection rule (II; downward) 
 

)]
4

)(sin(
)(2

)
4

)(cos(
)(

)])(exp(
)(2

))(exp(
)(2





















x

b

x

b

II

b

x

b

x

dxxk
xk

B
dxxk

xk

A

dxx
x

B
dxx

x

A
I

  (II; downward) 

 
we get 
 

2A ,  B = 0 
 
Then we have 
 

)]
4

)(cos(
)(

2   
x

b

II dxxk
xk

  for b<x<a 

 
This may also be written as 



27 
 

 

]
4

))(sin[])(cos[
)(

2

]
4

))(cos[])(sin[
)(

2

]
4

))()(sin[
)(

2

]
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))()(cos[
)(

2

)]
4

)()(cos(
)(

2
)]

4
)(cos(

)(
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a

x

a

b

a

x

a

b

a

x

a

b

a

x

a

b

a

x

a

b

x

b

II

dxxkdxxk
xk

dxxkdxxk
xk

dxxkdxxk
xk

dxxkdxxk
xk

dxxkdxxk
xk

dxxk
xk

 

 
Here we use the connection rule (I, upward), 
 

)])(exp(
)(

))(exp(
)(

)
4

)(sin(
)(

)
4

)(cos(
)(

2











x

a

x

a

a

x

a

x

dxx
x

B
dxx

x

A

dxxk
xk

B
dxxk

xk

A









  (I; upward) 

 
From this we have 
 

]
4

))(sin[])(cos[
)(

2

]
4

))(cos[])(sin[
)(

2












a

x

a

b

a

x

a

b

II

dxxkdxxk
xk

dxxkdxxk
xk

 

 
with 
 

])(sin[
a

b

dxxkA , ])(cos[2 
a

b

dxxkB . 

 
Since III  should have such a form 
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))(exp(
)( 

x

a

III dxx
x

A 


  

 
for x>a. Then we need the condition that 
 

0])(cos[2  
a

b

dxxkB , 

or 
 

)
2

1
()(  ndxxk

a

b

 

 
or 
 

)
2

1
()(  ndxxp

a

b

, 

 
where n = 0, 1, 2, ...  
 
10. Simple harmonics 

We consider a simple harmonics, 
 

22
00

22 2)
2

1
(2))((2)( xxmxmmxVmxp    

 
where 
 

2
0

0

2




m
x  . 

 
Then we get 
 

0
2

0

0

2
0

0

0

22
00

2

2

1

4
22)(

00

0




  

 m
m

x
mdxxxmdxxp

xx

x

 

 
When 
 

)
2

1
()(

0




ndxxp
a

x
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we have 
 





)
2

1
(

0

 n , 

 
or 
 

 )
2

1
(  n  

 
_______________________________________________________________________ 
APPENDIX 
 
Connection formula  
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