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Gregor Wentzel (February 17, 1898, in Dusseldorf, Germany — August 12, 1978, in
Ascona, Switzerland) was a German physicist known for development of quantum
mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel-
Kramers—Brillouin approximation in 1926. In his early years, he contributed to X-ray
spectroscopy, but then broadened out to make contributions to quantum mechanics,
quantum electrodynamics, and meson theory.

http://en.wikipedia.org/wiki/Gregor_Wentzel

Hendrik Anthony ""Hans™ Kramers (Rotterdam, February 2, 1894 — Oegstgeest, April
24, 1952) was a Dutch physicist.
http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers

Léon Nicolas Brillouin (August 7, 1889 — October 4, 1969) was a French physicist. He
made contributions to quantum mechanics, radio wave propagation in the atmosphere,
solid state physics, and information theory.

http://en.wikipedia.org/wiki/L%C3%A90n Brillouin

WKB approximation

This method is named after physicists Wentzel, Kramers, and Brillouin, who all
developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general
method of approximating solutions to linear, second-order differential equations, which
includes the Schrédinger equation. But even though the Schrddinger equation was
developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of
this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics
contain any number of combinations of their initials, including WBK, BWK, WKBJ,
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JWKB and BWAKJ. The important contribution of Jeffreys, Wentzel, Kramers and
Brillouin to the method was the inclusion of the treatment of turning points, connecting
the evanescent and oscillatory solutions at either side of the turning point. For example,
this may occur in the Schrdodinger equation, due to a potential energy hill.

(from http://en.wikipedia.org/wiki/WKB_approximation)

1. Classical limit
Change in the wavelength over the distance ox

5/1=@dx.
dx

When ox =4

5/1=ﬁ2,.
dx

In the classical domain, 4 << A4
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dx

dA
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|64) = <A or <<1,

which is the criterion of the classical behavior.
2. WKB approximation

The quantum wavelength does not change appreciably over the distance of one
wavelength. We start with the de Broglie wave length given by
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Then we get

_ 2h2/173ﬂ — om[- dV(x)] |
dx dx

or

dA_m s dV(x) _m(h) dV(x) _mhdV(x)

dx W dx W\ p dx PP odx
When Lz <<1, we have

dx

m—? Vx)| 1 (classical approximation)

p°  dx

If dV/dx is small, the momentum is large, or both, the above inequality is likely to be
satisfied

Around the turning point, p(x) = 0. |d¥/dx] is very small when V(x) is a slowly changing
function of x.

Now we consider the WKB approximation,

2 2

smm=&ﬁ—i+ww}uy

2m Ox?

When V' — 0,

ipx

w(x)=Ae™ = de .
If the potential Vis slowly varying function of x, we can assume that

w(x)=de

h n’ n®
S(x):So(x)+£Sl(x)+ESZ(x)+§S3(x)+ ..... :

((Mathematica))



WKB approximation

ﬁ2
eql = -;n DI¥[X], {X, 2}] +V[X] ¥[X] - ¥ [X];

rulel = {1[/—) (Exp[i; S[#]] &)};

eq2 =eql /. rulel // Simplify

i8[x]
e B (-2me+2mV[x] +S [x]2-inS"[x])

2m

rule2 =

{s->

n? B3 at
(SO[#] + AS1[#] +2— S2[#] + 3— S3[#] +4— S4[#] &

eq3 = (-2em+2mV[x] +S [x]®-4nS"[X]);

eq4 =eq3 /. rule2 // Expand;

listl = Table[{n, Coefficient[eg4, A, Nn]}, {n, O, 6}] //

Simplify;

% // TableForm

0 -2me+2mV[X] +S0 [x]?2

1 2SS0 [x] S1'[x] -1 SO [x]

2 S1/[x 12+SO[ ]82[ 1 -1 S17[X]

3 S1/[x] S2'[x ]+—SO[ ]S?»’[x]-%isz“[x}

4 1—12 (352 [x]2+ 451 [x] S3'[x] + S0’ [x] S4[x]

5 2—14 (4527 [x] S3'[X] +2S1'[X] S4 [X] - 1 S4”[X])
1 7’

6 7—2(253 2,382 [x] S4 [x])

-2183”[x])

For each power of 7, we have

—2me +2mV (x) +[S,' (x)] =0



25,'(x)S,' (x) = iS," (%),
[S, ()T + 8, (0)S,'(x) = i8," (%),

(@) Derivation of S,(x)

[Sy' ()] =2mle ~V (x)] = p*(x),
where

p*(x) =2mle -V (x)],
or

So'(x) =£p(x),

or
So(x) = ijp(x)dx.
Since p(x) =hk(x),

So(x) = ihj.k(x)dx .

o

(b) Derivation of S, (x)
28,"(x)S,"(x) =iS," (x),
d

i,"(x) _ i gy @)
25,'(x) 2 S,'(x)

Sy'(x) =
which is independent of sign.

S,(x) = [ 8, (x)elx = o NS’ ()] =2 In[rk ()],

or



iS,(x) = —% In[ik (x)] = In[ik (x)] /2,

(c) Derivation of S,(x)

or

[Sll(x)]z +.8,"(x)S,' (x) =i8,"(x) ,

oy 0S8 () =[S ()]
5 ()= So'(x) '

Then the WKB solution is given by

2 3

S0 = So(0) + 15,0 + 25,00+ 254

= ih]ik(x)dx - % In[Ak(x)]+..

The wave function has the form

w(x)= exp[—% In(7ik (x))][ 4" exp(i ]ﬁ k(x)dx) + B"exp(—i ]ﬁ k(x)dx)],

Xo Xo

or

where we put

A:i B:B

Vi Vi

3. The probability current density



We now consider the case of B = 0.

X i|k(x)dx
p(x) = mexp(f() ).

The probability is obtained as

P(y =y () = 1A AL
(x) vV m

where %ik(x) =mv.

The probability current density is

2
Sy =oAL e
v m m
- v dt
J
Fig. Jadt = avdt|z//|2 , or J = v|t//|2
4. WKB approximation near the turning points

We consider the potential energy ¥(x) and the energy & shown in the following figure.
The inadequacy of the WKB approximation near the turning point is evident, since

k(x) — 0 implies an unphysical divergence of y(x) .

@ V(x): increasing function of x around the turning point x = a



V(X)

<O S

(1) For x>>a where V(x)>e,
v (x) = iexp(—j K(x)dx) +iexp(j K(x)dx)
1 ]
Vi (x) y Vi (x) y
where 44 and B are constants, and

x(x) :%W,/V(x)—g :

(i)  For x<a where V(x)<e¢,

4, ‘ B, . ¢
v, (x) = mcos(l k(x)dx) + msm(l k(x)dx)
where

k(x):%\/%q/g—V(x).

(b)  V(X): decreasing function of x around the turning point



V(X)

X

i

() For x<<b where V(x)>e¢,
v, (x) = iexp(j K(x)dx) + Lexp(j K(x)dx),
Ve(x) ve(x)
with
Kx(x) =%m,/V(x)_g ,
(i) For x>b where V(x)<e,
v () =22 cos( j k(x)dx) + —2—sin( j k(x)dx))
k() Jk (
where
k(x) = %mq/g—V(x)
5. Exact solution of wave function around the turning point x=a



V(X)

The Schrodinger equation is given by

n* d?
oV = ey (2)
or
h? d?
g e V=W =0

where ¢ is the energy of a particle with a mass m. We assume that
V(x)—E=g(x—a)

in the vicinity of x =a, where g>0. Then the Schrddinger equation is expressed by

LY 2 geapy =0,
Here we put

z =(2;1nzg)1/3(x_a) .
Then we get

d*y(2)

Q2 zy(z)=0.
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The solution of this equation is given by
w(z) = 2C4,(2) + C,B,(2)

where we use 2C; instead of C;. The asymptotic form of the Airy function 4;(z) for large
|z| is given by

A(z) =72 |z cos(g - %) , for z<0

and
1 5 we

A[.(Z)=§7Z |z| e, for z>0

where
2 3/2
=—|z
s 3| |
4i(2)

Fig.  Plot of the A4i(z) (red) and its asymptotic form (blue) as a function of z for z<0.

The asymptotic form of the Airy function Bj(z) for large |z],

B(z)=—-n2 |z sin(g—%) , for z<0
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B/(z)=n"? 27", for z>0
with

|Z|3/2

g:

Bi(2)
20

15§

AAA S
AV VAN

Fig.  Plot of the Bi(z) (red) and its asymptotic form (blue) as a function of z for z<0.

Here we note that

For z<0,

[2m 2mg !
k(x)= ?g(a—x)z( 2 j |z 2

Then we have

jik(x)dx = ( jllzj\/a xdx

1/2
:é(z;;gj (a—x)¥?

2
=S1zP=¢

12



2m 2mg e
K(x)a/?g(x—a):[ h2 j 2

]C‘K(X)dx = ( 2mg JUZI\/ X —adx

hz
2 2m 1/2
:E( hzgj (x—a)¥?
2
=2 lzf"=¢
6. Connection formula (I; upward)
V(X)
A
E
> X
Q a

() Asymptotic form for z<0 (x<a)

The asymptotic form of the wave function for z<0 can be expressed by

2C,A4,(z)+ C,B,(2) =2C,x V% | z|™M'* cos(¢ —%) —~C,r ™%z sin(¢ —%)

_ L2 2”1_g1/6 1 T Ty 1 .7 T
-7 (hz) [2Cl—mcos(£k(x)dx 7 Cz—msmqk(x)dx )]

where
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a 2 ng 1/3
¢ =[k()dr=212", k(x)=(hzj 212,

(i) The asymptotic form for z>0;

The asymptotic form of the wave function for z>0 can be expressed by

2C1Ai (z) + C,B. (z)= Clﬂ_—1/2|z|—1/4e—g + Czn_—llzz—lmeg

=g Y2 ( 2mg ] [C, Lexp(—;f K(x)dx) +C, ﬁ exp(I K (x)dx)]

i’ JK(x)
where
. 5 2me |
g:IK(x)dx=§|z|312, K(x)z( hzg) |z ['2.

The we have the connection rule (I; upward) as follows.

(I; upward)

at the boundary of x = a.

V(x)
A

[N
SN



where C1 =4 and C, = B.

7. Exact solution of wave function around the turning point x=Db

V(X)

A

|

» X

[ S -

The Schrodinger equation is given by

K dy
2m dx?

+V(x)y =ep(x),

or

B dy
2m dx’

+[V(x)-¢ely =0,

where ¢ is the energy of a particle with a mass m. We assume that
V(x)—e=-g(x-b),

in the vicinity of x =b, where g>0. The Schrodinger equation is expressed by

d? 2m
dxl/Zl +h—2g(x—b)l// =0.
Here we put
1/3
z :_(2215) (x—b).
Then we get
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d’y(z)
dz?

—zy(z)=0.

The solution of this equation is given by
y(z)= 2C,4, (2)+ G, B (2).
We note the following.

Q) For z<0 (x>b)
k(x) is expressed by

[2m 2mg 1
k(x) = ?g(x—b)=(h_zj |Z|1/2,

Ik(x)dx_(ZMgJ j‘ s~ bdx __[ZZgj (x_b)3/2=§|2|3/2=§-

(i) For z>0 (x<b), where &V(x)
x(x) is expressed by

x(x)= \/—[8 V(x)]= \/ — &b-x)
=(2mgj 3|Z|1/2
72

j)‘K(x)dx [ngj i\/de (Zg’lgj (b—x)3/2=§|z|3/2=g

8. Connection formula-11 (downward)
The asymptotic form for z<O0;

2C,A.(z) +C,B,(2) =2C,x ™% | z | cos(¢ —%) —C,r ™ |z sin(g -

2 16
_ 7[—1/2( mg

1

h? j [ZCI,/k(x)
1 . ¢ Va
_Q]ﬁjwqﬂﬂﬁ_zﬂ

cm%ﬂnw—z)
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The asymptotic form for z>0;
2CA.(2)+C,B,(z) = Clﬂ‘1/2|z|‘1’4e—§ LGyt Mes

. [ 2mg J [C, 1 exp(—j' x(x)dx)

n’ Jr(x)

e Lexp(} K(x)dv)]

Vr(x)

Then we have the connection formula (I1; downward) as

with

V(X)

m
v/

where C1 =4 and C, = B.

9. Tunneling probability

(11, downward)

We apply the connection formula to find the tunneling probability. In order that the
WKB approximation apply within a barrier, it is necessary that the potential 7(x) does not
change so rapidly. Suppose that a particle (energy &and mass m) penetrates into a barrier

shown in the figure. There are three regions, I, I, and I11.
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AV(X)

m

Fig.  The connection formula | (upward) is used at x = @ and the connection formula Il
(downward) is used at x = b.

For x>b, (region I11)

A
Y= m

- cos(;f k, (x)dx—%) 4

V ki (x)

(we consider on the wave propagating along the positive x axis), where

k(%) =,/2—T(8—V(x)) .

The connection formula (11, downward) is applied to the boundary between the regions
I and II.

exp[i(jkl(x)dx—g)]

iAd . ¢ T
Wsm( j ki (x)dx =)

N

(11, downward)

Here we get
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B=-2i4.

Then we get the wave function of the region II,

Vi=> Fexp( j K(x)dx) - mexp(j K (x)d)]

cos(j ky (x)dx —%) +

! id . 7 oz
‘/ﬁu‘m MSIn(}[kl(X)dx 4)]

or
Vi = \/_exp( j K (x)dx + j i (x)dx) — \/_exp(j Kx(x)dx — j x(x)dx)]
:\/;%)—exp( j K(x)dx) + mgequ K(x)dx) +
where
K =2 ()2
and

7 =exp(— j x(x)dx)

Next, the connection formula (I; upward) is applied to the boundary between the regions
Iland I.

19



(I; upward)

Here we get

C—-ial,

7

D=—r.
2

Then we have the wave function of the region I,

214 1

v, ——,sz—cos(jkz(x)dx %

) T
_ ZW rsm(jk2 (x)dx _Z)]

\/k—()—{exp[z(j k, (x)dx — —)]+exp[ z(j k, (x)dx——)]}

T . T
- ( ¥ —{exp[z( j kz(x)dx—z)]—exp[—zq oy (x)dx =1}

or

7

1 r 1
kz(x){(——;)exp[z(j o)== (G + ) expl- z(_[k (eI}

1 r

—id : 1 r )
= o {(; - Z) exp[—z(! ky(x)dx + %)] + (; + Z)) exp[i( j ke, (x)dbx + %)]}

The first term corresponds to that of the reflected wave and the second term corresponds
to that of the incident wave. Then the tunneling probability is
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1

r\2
+7
2

b
T= ~rl= exp(—ZI & (x)dx)

1
-
r
where

r= exp(—i & (x)dx)

9. a-particle decay: quantum tunneling

V(r)

Coulomb repusion

1 [

=

uclear binding

Fig. Gamov's model for the potential energy of an alpha particle in a radioactive
nucleus.
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Re ya(r)

10+ B

nuclear potential (MeV)
— |
— |
— |
S
= |
—]
m

7

Fig.  The tunneling of a particle from the 22U (Z = 92). The kinetic energy 4.2 MeV.
http://demonstrations.wolfram.com/GamowModelForAlphaDecay TheGeigerNutt
allLaw/

For ri<r<rs.

x(r) :%MJV(;’)—,&‘

Atr=r,

27.¢*
P

Are,r,

The tunneling probability is
P=e¢¥ =exp[-2 j x(r)dr]

where
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y= ]%K(r)dr

= @quV(r) —e&dr
N2me

h 1
2
_N2me rz[arccos\/zl— i(1—2)]
7 7, 7, 7,

where m is the mass of a-particle (= 4.001506179125 u). fm = 10™° m (fermi).
The quantity P gives the probability that in one trial an « particle will penetrate the
barrier. The number of trials per second could estimated to be

I‘z }/'
[y~ —1dr
" r

N=—
2r;

if it were assumed that a particle is bouncing back and forth with velocity v inside the

nucleus of diameter 2r1. Then the probability per second that nucleus will decay by

emitting a particle, called the decay rate R, would be

v
R=—-=e%
2r,

((Example))

We consider the « particle emission from *®U nucleus (Z = 92), which emits a K =
4.2 MeV « particle. The a particle is contained inside the nuclear radius ; = 7.0 fm (fm =
10 m).

() The distance r,:
From the relation

K 27¢*
4re,r,
we get
7o = 63.08 fm.

(i) The velocity of a particle inside the nucleus, v:
23



From the relation

where m, is the mass of the a particle; m, = 4.001506179 u, we get
v=1.42318 x 10" m/s

(iii)  The value of ».

y= “ZZ“K [, arccos \/:Z — Jn(r,—1r)]=51.8796
2

(iv)  The decay rate R:

R=-Y¢%=8813x10%
ry
((Mathematica))
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Clear["Global *"];

rulel = {u - 1.660538782x 107%", eV -» 1.602176487 x 1077,
ge » 1.602176487 x 10™°, c - 2.99792458 x 108,
A - 1.05457162853x 1073, €0 - 8.854187817 x 1072,
MeV - 1.602176487 x 103, Ma » 4.001506179125 u,
fm > 107, 71592, r1 57 fm, K1 > 4.2 MeV};

2 71 qe?

eq0 = K1 == — //. rulel
4re0r

4.24502 x 1026

r

6.72914x 10713 -

eqO0l = Solve[eq0, r]; r2=r /. eq01[[1]]
6.30842 x 101

r2
— /. rulel
m

63.0842

1
eql = 3 Mav? == K1 //. rulel; eq2 = Solve[eql, V];
vli=vVv/.eq2[[2]]

1.42318x 10’

A2 Ma K1l rl
Y=—"T"T"¥—— r2ArcCos[ — ]-Vrl (r2 -rl) | //.-
fa] r2
rulel
51.8796

vl
Rl =—— Exp[-2¥] //- rulel
2rl

8.81282x 10 %°
25



9. Bound state

AV(X)

For x<b (region 1), the unnormalized wave function is

v, = J%exp(—ix(x)dx),

Using the connection rule (11; downward)

(11; downward)

we get
A=2, B=0

Then we have
2 ¢ Vs
=———cos(| k(x)dx —= for b<x<a
Vi = i SO K =]

This may also be written as
26



COS(I k(x)dx — %)] __2 cos(j k(x)dx — Ik(x)dx - %)]

Vk(x)

cos[]:k(x)dx - _j[k(x)dx) + % - %]

2
Y= /_k(x)

2

k()

2
k()
= ﬁsin[i'k(x)dx] cos[j:k(x)dx) —%]

Sin[j:.k(x)dx —j:k(x)dx) + %]

-2 cos{ K()asinf] k() - 7]

Ak (x)

Here we use the connection rule (I, upward),

(I; upward)

From this we have

Vi = J%sin[jk(x)dx] cos[Ik(x)dx) -
- ﬁcos[l‘k(x)dx]sin[j: ke (x)dx) —%]

with
A=sinl[k()dx],  B=—2cos[] k(x)dx].

Since y,, should have such a form
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—L _x Xx)dx
Wiy = mexp( j K (x)dx)

for x>a. Then we need the condition that

B= —2cos[ik(x)dx] =0,

or
f 1
j k(x)dx = (n+>)r
. 2
or
f 1
Ip(x)dx =(n+>)hrx,
) 2
wheren=0,1, 2, ...

10.  Simple harmonics
We consider a simple harmonics,

p(x) =+2m(e -V (x)) \/Zm(g—gma) x?) =2max,” — x*

where
2¢
Xy = 5
ma,
Then we get
Ip(x)dx 2ma)0J‘w/xO —x’dx = Zma)o ma,m 282 -
—Xo 2 may 2
When

j p(x)dx = (n+—)7zh

—x0

28



we have

Ly
@, 2
or
1
e=n+>)ho
(n+2)
APPENDIX

Connection formula

k(x) =%W1/5—V(x)

k() =%m1/V(x)—g

29



V(x)

kq(x)

Connection formula | (upwar

24 5 I 5 % §
ﬁm(! ﬂxm—;)—ﬁm[mm—;)
—J

eale LeR R L R

30

K(X)

ka(x)

Connection formula Il (dowi

Q‘ETn““'i“M"g%“"i“"‘*’]
=

'y kN I I . 5
ﬁmﬂ!ﬂnﬁ—j—mm{aﬂm )l



V(x)

k1(x)

Connection formula Il (dow

- J_mp( frtssain s —2— rexp(]xtaﬁdl

=

o <o Koe = - et Jrtoae -

31

k(x)

®2(x)

Connection formula | (upwar:

Ws(f'«(% msn(jkm& %

2 expi—f 5000 +—E— expi| K000
]x'(x; : ]K(-ﬂ :



