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The Kinetic theory of gases

In this chapter we will introduce the kinetic theory of gases which relates the motion
of the constituent atoms to the volume, pressure and temperature of the gas. The
following topics will be covered:

((Ludwig Boltzmann))

Ludwig Eduard Boltzmann (February 20, 1844 — September 5, 1906) was an Austrian
physicist famous for his founding contributions in the fields of statistical mechanics and
statistical thermodynamics. He was one of the most important advocates for atomic
theory when that scientific model was still highly controversial.

Boltzmann’s equation-curved in stone.

This equation was originally formulated by Ludwig Boltzmann between 1872 to 1875,
but later put into its current form by Max Planck in about 1900. To quote Planck, "the



logarithmic connection between entropy and probability was first stated by L. Boltzmann
in his kinetic theory of gases."

1 Molecules colliding with wall

We consider molecules that strike a unit area of the wall of a container. Let v, denote the
velocity component normal to the plane of the wall.
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The particles are inside the cube with the volume V. There are N particles. We
consider the particle (mass m) with the velocity (v,,Vv,,V,). After the reflection at the wall,

the velocity of the particles is changed into (-v,,v,,v,) .The change of the linear

momentum gives a force on the plane normal to the X axis.
Ap, =-2mv, = F At

As a result of the Newton’s third law (the action-reaction), the force
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is exerted on the wall (as an impulse), contributing to the pressure. Here we assume that
the number of molecules (per unit volume), which have velocity componenets of vy —
(Vxtdvy), vy — (Vy+dvy), and v, — (V,+dV,) is given by

Vl N(v)d’v = VL N (v,,v,,v,)dv dv dv,

where N(v)d’v is the number of molecules whose velocities are Vx — (Vx+dvy), Vy —
(vy+dvy), and v, — (v +dv,).

N:_[N(v)d3v

The number of particles (velocity V) colliding with the plane is evaluated as follows.

D

The volume of the cylinder is given by
Av At

The number of molecules in the cylinder is calculated as



(AvXAt)Vi N(v)d’v

The force applied along the X axis is

2mv, 1y (v)d’v = é2mvx2 N(v)d’v
AtV \Y

(Av, At)

Then the pressure P is defined by

2AmMv.°
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F XN (v)d’v
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where only the particles with v,>0 contribute to the pressure.
2 Thermal equilibrium

In thermal equilibrium, the gas is assumed to be homogeneous for each direction. So
it is natural to consider that N(v) is dependent only on the magnitude of v.

1 1
PV = Ivasz(v)d3v = Ejzmvsz(v)on = Ejmva(v)dw

v, >0

where v’ is replaced by v*/3.
Here we note that average of the total energy is

<E>=J%mv2N(v)d3v

Then we have

This equation is called a Bernoulli’s equation.
For an ideal gas, we have the Boyle’s law

PV = NK,T ,

leading to the expression for <E>



(E) = Ne = > Nk;T
2
Note that ¢is the average energy of each particle.
&= %kBT

3 Maxwell velocity distribution f(v)

3.1 Determination of the form N(v)
It is assumed that N(v) depends only on the magnitude of v. The velocity distribution
for vy 1s independent of those for vy and v,. Then we have the form of N(v) as

N(V)=G(v*) =9(v,)9(v,)g(V,) (1)
with g(0) = o, where G and g are functions to be determined. In Eq.(1), we put vy =V, = 0.
G(v,)=9(v,)9(0)g(0) = a’g(v,)
Then we have
1 2
g(vx) = _26(Vx )
a

Similarly,

1 2
g(vy) =?G(Vy )
9v,) == G,

o

Then Eq.(1) can be rewritten as

G(V))=G(v,” +V,” +V,") = g(v,)g(v,)g(V,)

1
= GG, )GV,
For simplicity we put v, = &, vy2 = 7, andv,” = £ Then we have

G(E+n+9) =%G(§)G(77)G(§) -



Taking a derivative of the above equation with respect to 77 and putting 7= ¢=0,
1
G'(d)= ?G(f)G'(O)G(O) =-aG($)
or

G()=Ae™

where
1,
a=-—G'(0)G(0).
a

The final form of N(V) is obtained as
N(V)=G(v,” +v,” +V,") = Aexp[-a(v,” +V,” +V,)]
Now we determine the values of A and a.
(@) Determination of A
N = m N(v)dv
= J:U Aexp[-a(v,” +Vv,” +Vv,”)]dv,dv,dv,
= A[J exp(—avxz)dvx]3

T
— A(_)3/2
a
or
A — (E)—?)/Z N
a
where

—00

((Mathematica))



J[n ] := fwx” Exp[—axz] dx // Simplify[#, a> 0] &
listl = Table[{n, J[n]}, {n, O, 10, 2}];
listl // TableForm

o Yo
Va
5 N
4 3
485/2
6 15/
3 105/ 1
168.9/2
945/
10 323.11/2

(b) Determination of a
The total energy <E> is given by

(E) :J'”%m(vx2 +V,” +V, )N (v)dv,dv,dv,

z

= m% m(v,” +v,” +v,")Aexp[-a(v,’ +V,” +V,")]dv,dv,dv
= I %mvaexp(—av2)4;zv2dv
_1 T 4 2
—EmA47er exp(—av-)dv
0

1 1%, )
_EmA4”§ J;v exp(—av-)dv

| 13J7

=—mAdr—
2 2 4a°?

3/2

RY/4
=mA 4a°?

where V is the radius of the sphere in the (Vx, Vy, V,) and 4zv°dv is the volume element
enclosed by the spherical shell of inner radius v and outer radius v +dv,



vi=v vy,
d’v =dv,dv, dv, = 4av’dv

Then we have

372_3/2 3
(B)_ ™ _Maa _3m_3,
N ,Ze2 1 42 2°°
A(7)3/2 —
a a

In summary we have the Maxwell distribution or Maxwell-Boltzmann distribution,
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m mv
N(V)=N(——)" - .
(V) (27szT) exp( 2kBT)

We define n(v) as

2

0= = ) e
with
1= j n(v)d’v = j n(v)4av>dv
(1) n(v)dyv is the probability of finding particles whose velocities are vy — (Vx+dvy), Vy
— (Vy+dvy), and v, — (V,+dv,).
(2) Note that n(v)4nv’dv is the probability of finding particles whose magnitude of

velocities are between v and (v + dv).
Using the Avogadro number N, where

Nam = M (the molar mass)
Naks = R (gas constant),

n(v) can be rewritten as



2

n(v)= (22%) exp(= gﬂgT)

The function n(v) has a Gaussian type with a peak at v = 0. Here we introduce the
probability f(v)dv of finding the particle having the velocity between v and v + dv, as

2

M 3/2 MV
f(v)dv=4n’n(v)dv=| —— | 4n? -
) V) (27ZRT] X opT

)dv
where

j f(vydv=1

0

f(v) is called the Maxwell velocity distribution and is given by

MY My>
f(vV)=| —=| 4av’exp(-
W) (ZﬂRTj Xp(=RT)

((Note))
ﬁ N(v)dv = n(v)dv = 42v’n(v)dv = f (v)dv
We note that f (V) has a local maximum at

= /2k—BT = [ﬂ =1.41421, Iﬂ (most probable speed)
m M M

((Note))

df(v)_( M J” MV o MV
dv  \272RT 2RT

3/2 v
= —(iJ e ~2)=0
27RT 2RT

The maximum value of f (V) at Vv =Vp, is
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The distribution function is normalized as

M=(VL)2 expl1 ~ ()]

max mp mp
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Fig. Plot of the normalized f(v)/ f_ , asa function of a normalized V/Vyy.

X

Green: most probable speed (Vimp)
Blue: averaged speed (Vavg)
Brown: root-mean squared speed (Vims)

NG

\Y
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3.2  Calculation of average <v">
Using f(v), we calculate <Vv" > which is defined by

<v" >= jv”f(v)dv

(a) The average speed Vay,

10



(b) The root-mean squared speed Vims
2 .\ 3RT
Vs =(V7)=——
rms < > M
or
(c)
2 RT RT
V) =8 = (—)"* =6.38308(—)"""
(v)=8)=G) )
(d)
RT
v =15(—)
(V) =15
In summary,
or
3.3 Calculation by Mathematica
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Maxwell distribution of velocities

v- Exp

M )3/2 2 [ Mvz]
2RT

eql =D[£f, v] // Simplify

Mv? \5/2 \
e ZRT 2 [lb V(ZRT—MVZb
i RT/ !

M

Maximum point of £

eq2 = Solve[eql =0, v];
fmax=f /. eq2[[3]] // Simplify

2 |z (M
m RT
e

Calculation for the average of v°

fi[n ] : P

Ji[n ] := S:melify[jwfl[n] dv,
0
{(M>0, R>0, T>0}]
eql =

Table[{n, J1[n]}, {n, 1, 10}] //
Simplify // TableForm

5 3RT
M
—
|
8\.",% MRrT)3/2
3 i
3
4 15 rZ 72
M

555
10 10 3955R T
M

12

M 3/2
4 ( ) v2+2 Exp[—

M v2

2RT

]



3.4  Molecular speed

((Molecular velocities))
As is shown above, the most probable speed is given by

v,, =141421 X0
M

From this form, we get the relation
JYMv,, =+2JRT

where
R =8.314472 J/mol K

When M (kg/mol) = My (g/mol), and Vy,, (m/s) = Vmp0 (0.1 km/s),
M =10 My, Vimp = 107 Vi

Then we have
J10°M,10%,,.° =24/RT

NIV :L\/RT _ LRt
1024107 V5

J6

0
—V we have

: 0
Since V,,, = mp 0

J6
IMv =2 JRT
0 “rms 2\/5

which is equal to 26.095 at T =273 K.

Table
The root-mean square speed for various gases (experimental values at T =273 K)

Vi, (0.1 km/s) Ve (0.1 km/s) Mo (z/mol) Vins /M

H, 18.4 16.9 2.0158 26.0

13



He 13.1 12.1 4.003 26.2

H,O 6.2 5.7 18 26.30
Ne 5.8 53 20.18 26.05
N> 4.9 4.5 28 2593
0O, 4.6 4.2 32 26.02
Ar 43 4.0 39.95 27.18
Kr 2.86 2.63 83.9 26.20
Xe 2.27 2.09 131.3 26,0

((Example)) Calculation of Vinp, Vayg, and Vims

Hzl

M = 2.0 g/mol = 2.0 x 10 kg/mol

T=300K

Vo = 1.579 x 10° m/s

Vo =1.782x 10° m/s

V. =1.934x 10° m/s

Maxwell-Boltzmann Molecular Speed
Distribution for Noble Gases
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3.5  Zartman-Ko experiment

A beam of molecules that emerged from a slit in the wall of an oven provided that
basis of a direct test of the Maxwell-Boltzmann velocity distribution. This experiment,
performed in the early 1930s by LLF. Zartman and C.C. Ko, made use of the apparatus
shown in Fig. The oven contains Bi (bismuth) vapor at about 800°C, some of which
escapes through a slit and is collimated by another slit a short distance away. Above the
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second slit is a drum that rotates about a horizontal axis at 6,000 rpm. At those instants
when the slit in the drum faces the Bi beam, a burst of molecules centers the drum. These
molecules reach the opposite face of the drum, where a glass plate is attached, at various
times, depending upon their speeds. Because the drum is turning, the faster and slower
molecules strike different parts of the plate. From the resulting distribution of deposited
Bi on the plate it is possible to infer the distribution of speeds in the beam, and this
distribution agrees with the prediction of Maxwell-Boltzmann statistics.

—- .

vacuum
pump

|~ drum

—— glass plate

— molecular beam

3.6 Neutron diffraction
3.6.1 Moderator

Nuclear reactors provide a copious source of thermal neutrons. To a reasonable
approximation, neutrons produced by nuclear fission are moderated within the reactor to
form a gas with a Maxell-Boltzmann distribution of speeds corresponding to a
temperature equal to that of the moderating material. This moderating material is
typically light or heavy water at a temperature somewhat above 300 K, though if more or
less energetic neutrons are required it is possible to locally heat or cool a part of the
moderator and so produce a hot source or a cold source. Figure plots the Maxwellian flux
distribution coming from moderators at 320 K and at 25 K. The peak flux for a
temperature of 320 K occurs at a wavenumber of 4.5 A™, which corresponds to a neutron
wavelength of 1.40 A. By cooling the moderator to 25 K the peak flux is shifted to a
wavenumber of 1.25 A, corresponding to a neutron wavelength of 5.0 A. These
wavelengths are of the order of interatomic distances, so that neutrons are well suited to
probe properties on an atomic length scale.
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Fig.  Flux distribution in the beam of neutrons from a moderator at 25 K and from a
moderator at 320 K. The distributions are normalized to have the same total flux
(M.F. Collins, Magnetic Critical Scattering, Oxford University Press 1989).

3.6.2 Neutron temperature
In the thermal neutron energy range, the velocity distribution of neutrons follows the

Maxwell-Boltzmann distribution according to which the most probable speed of the
neutrons is:

1eV=1.602176487 x 10" ]

m, = 1.674927211 x 10" kg (mass of neutron)

Na = 6.02214179 x 10

ks = 1.380650410 x 10 J/mol K (Boltzmann constant)

R=28.314472 J/K (gas constant)

Mp=mpNa=1.00728 x 107 kg (molar mass of neutrons)

At room temperature (20 °C =293 K)
Vimp = 2199.34 m/s
Vavg = 2481.69 m/s
Emp=25.25 meV.
Eavg =27.4299 meV

At 25 K (liquid hydrogen temperature)
Vimp = 642.433 m/s
Vavg = 724.908 m/s
Emp=2.15434 meV.
Eavg =2.74299 meV

At 4.2 K (liquid helium temperature)
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Vimp = 263.319 m/s
Vavg = 297.124 m/s
Emp=0.361928 meV
Eavg = 0.460822 meV

The neutron temperature, also called the neutron energy, indicates a free neutron's
kinetic energy, usually given in eV. The term temperature is used, since hot, thermal and
cold neutrons are moderated in a medium with a certain temperature. The neutron energy
distribution is then adopted to the Maxwell-Boltzmann distribution known for thermal
motion. Qualitatively, the higher the temperature, the higher the kinetic energy is of the
free neutron. Kinetic energy, speed and wavelength of the neutron are related through the
De Broglie relation.

Fast neutrons have an energy greater than 1 eV, 0.1 MeV or approximately 1 MeV,
depending on the definition.

Slow neutrons have an energy less than or equal 0.4 eV.

Epithermal neutrons have an energy from 0.025 to 1 eV.

Hot neutrons have an energy of about .2 eV.

Thermal neutrons have an energy of about 0.025 eV.

Cold neutrons have an energy from 5x10™ eV to 0.025 eV.

Very cold neutrons have an energy from 3x10” eV to 5x107 eV.

Ultra cold neutrons have an energy less than 3x107 eV.

The wanelength of the neutron is given by

h 307895 ¢

e T

n

1.79874 Aat 293 K
6.15789 A at 25 K
15.0237 A at4.2 K

4 Equipartition of energy
The energy ¢ =%kBT is ascribed to a contribution %kBT from each “degree of

freedom” of each particle, where the number of degrees of freedom is the number of
dimensions of the space in which the atoms move: 3 in this example.

2 2 m 2

<Vi>=<v>+<v > +<y >=3<y >

or
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< %mvx2 >= %kBT

L mv,” >= 1 keT

2 2
L mv,” >= 1 keT

2 2

1 2 2 2 —3kT
<§m(vX +Vv, 4V, >_5 B

Let us now modify one of the basic assumption in the model of the ideal gas. Instead
of considering a molecule to be presented as a point particle, let it be considered as two
point particles separated by a given distance. This model gives a better description of
diatomic gases. Such molecules can acquire kinetic energy by rotating about its center of
mass, and it is therefore necessary to consider in the internal energy the contribution of
rotational kinetic energy as well as the translational kinetic energy. The rotational kinetic
energy of a diatomic molecules can be written as

1 2 1
Krot = E | W@y + E | y,a)y.

2

where | is the rotational inertia of the molecule for rotations about a particular axis. The
X’y’Z’ coordinate system is fixed to the center of mass of the molecule. There is no kinetic
energy associated with rotation about the 2’ axis, because I, = 0.

1

< 1 o, >=—kgT
2 2

< % |0, >= % kT

5 Heat capacity of the system with the degree of freedom (f)

The specific heat of the gas is best conceptualized in terms of the degrees of freedom
of an individual molecule. The different degrees of freedom correspond to the different
ways in which the molecule may store energy.

If the molecule could be entirely described using classical mechanics, then we could
use the theorem of equipartition of energy to predict that each degree of freedom would
have an average energy in the amount of (1/2)kT, where kg is Boltzmann’s constant and T
is the temperature. Our calculation of the heat content would be straightforward. Each
molecule would be holding, on average, an energy of (f/2)kgT where f is the total number
of degrees of freedom in the molecule. The total internal energy of the gas would be
(f/2)NaksT, where N4 is the total number of molecules. The heat capacity (at constant
volume) would then be a constant (f/2)Nakg, the specific heat capacity would be (f/2)kg
and the dimensionless heat capacity would be just /2.

6 The case for diatomic molecules
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With complex molecules, other contributions to internal energy must be taken into
account. The number of freedomisf=7. E=fRT. Cy =fR=29.1 J/ mol.K and
v=1.29
(@) One possible energy is the translational motion of the center of mass.

The three degrees of freedom described above are associated with the translational
motion of the molecules in 3 independent directions. 3)

=]

.............. (il)
(b) Rotational motion about the various axes
We can neglect the rotation around the y axis since it is negligible compared to the X and
Z axes. Rotational motion: 2 degrees of freedom (@, and wy). Rotational kinetic energy

1 , 1 2
—lo,+—lw,. 2
2 ¢ 2 @)

(b)

(© Vibration of diatomic molecules
The molecule can also vibrate. There is kinetic energy and potential energy associated
with the vibrations. This adds two more degrees of freedom. (2)

(E)=(K)+{U)=2(K)=2(U)=ho~k,T =2(%kBT)
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7 Agreement with Experiment

At low temperatures, a diatomic gas acts like a monatomic gas Cy= 3/2 R. At about
room temperature, the value increases to Cy= 5/2 R. This is consistent with adding
rotational energy but not vibrational energy. At high temperatures, the value increases to
Cy=7/2 R. This includes vibrational energy as well as rotational and translational

- /2
T

3 7 Oseillation

Cy/R
ro
N,
=
Q
=
&
=
Q
=

Translation

0 | | | | | | | |
20 50 100 200 500 1000 2000 5000 10,000

Temperature (K)

8. Mean free path |
8.1  Definition

The mean free path or average distance between collisions for a gas molecule may be
estimated as follows. If the molecules have diameter d, then the effective cross-section

for collision can be modeled by
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The effedive

colliEon ans
©):

A=xd’

using a circle of diameter 2d to represent a molecule's effective collision area while
treating the "target" molecules as point masses. In time t, the circle would sweep out the
volume shown and the number of collisions can be estimated from the number of gas
molecules that were in that volume.

cemter leatin
. oftargef imoleonke
A =mi, ‘:l‘ "
.': *m ) * - 1 .
'lrl_ K____/’L ] p Vaolume = J1d vt :
e Mdecuar N2 . -
szm | Tt |

. = melegules per unit vohans

The mean free path (the mean distance per collision) could then be taken as the length of
the path divided by the number of collisions.
w1
(rd*vt)n, d’n,

Where 7d*vt is the volume of interaction, Ny is the number of molecules per unit volume.
The problem with this expression is that the average molecular velocity is used, but the
target molecules are also moving. The frequency of collisions depends upon the average
relative velocity of the randomly moving molecules.

8.2  Refinement of mean free path

The intuitive development of the mean free path expression suffers from a significant
flaw - it assumes that the "target" molecules are at rest when in fact they have a high
average velocity. What is needed is the average relative velocity, and the calculation of
that velocity from the molecular speed distribution yields the result.
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<|v1 - v2|2> =v, V" =2(v, v, ) =2V

since V; =V, =V and
(V,-V,) =V, {cos @) =0

Then the average relative velocity is given by

Vrel = <|v1 —v2|2> =+/2v

which revises the expression for the effective volume swept out in time t. The resulting
mean free path is

1
=
V27d’n,

The number of molecules per unit volume can be determined from Avogadro's number
and the ideal gas law, leading to

_N_P _N/P
AAY keT RT '

where
PV = NkgT
Then the mean free path is obtained as

. L __RT
2xd*n,  V2mdN,P

The mean free path depends on T, P, and the diameter of gas atoms.
((Example)) Evaluation of mean free path (He atom)

d=2.2 A (atomic diameter)
The collision cross section = zd* = 15.2 x 102 m?
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Ny (the concentration of molecules of an ideal gas at 273 K and 1 atm, which is called a
Loschmidt number)

n, = NaP _ 6867774 x 10%° atoms/m’
RT
| = 12 =2.44x 107 m=2440 A
7dn

The rate of collision:

Vips 1310

rms

R YVITE =5.37x10"/s
. X

where Vs = 1310 m/s for He gas.

((Note))
Being a measure of number density, the Loschmidt constant is used to define the
amagat, a practical unit of number density for gases and other substances:

1 amagat = ny = 2.6867774x10* m
such that the Loschmidt constant is exactly 1 amagat.
8.3  Estimation of the mean free path at high vacuum

Estimate the mean free path of an air molecule at 273 K and 1 atm, assuming it to be
a sphere of diameter 4.0 x 10 m (4A). Estimate the mean time between collisions for an
oxygen molecule under these conditions, using V = Vyns = 517 m/s

RT (8.313/K)(273K)
T 2mN,P 2r(4x107°)2(6.02x10%)(1.01x 10° Pa)

B 5.2342x10°m
517m/s

=5.2342x10"%m
~1.0x10™"s

How about the mean free path at the high vacuum?
P=10" Torr = 10" mmHg = (10™)/760 atm = (10™)/760 x (1.01x10°) Pa

RT (8.313 / K)(273K)

107"

eV V272(4%10-10)(6.02x 10>)(1. 01><105Pa)><

=760x10"x5.2342x10°m =3.978x10">m

23



For P = 107 Torr (in the laboratory), we have
| =3.978 m.

For P = 10 Torr (ultrahigh vacuum), we have
I=3978 m.

((Link))

Mean free path calculation
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html

Mean free path
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html

Lecture note (University of Rochester)
http://teacher.pas.rochester.edu/phy121/LectureNotes/Chapter18/Chapter18.html

Kinetic theory
http://en.wikipedia.org/wiki/Kinetic theory

Maxwell-Boltzmann distribution
http://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

Molecular speed
http://hyperphysics.phy-astr.gsu.edu/Hbase/kinetic/kintem.html
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