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_____________________________________________________________________________ 

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting 
bosons confined in an external potential and cooled to temperatures very near absolute zero (0 K). 
Under such conditions, a large fraction of the bosons occupy the lowest quantum state of the 
external potential, at which point quantum effects become apparent on a macroscopic scale. This 
state of matter was first predicted by Satyendra Nath Bose and Albert Einstein in 1924–25. Bose 
first sent a paper to Einstein on the quantum statistics of light quanta (now called photons). 
Einstein was impressed, translated the paper himself from English to German and submitted it 
for Bose to the Zeitschrift für Physik, which published it. Einstein then extended Bose's ideas to 
material particles (or matter) in two other papers. 

Seventy years later, the first gaseous condensate was produced by Eric Cornell and Carl 
Wieman in 1995 at the University of Colorado at Boulder NIST-JILA lab, using a gas of 
rubidium atoms cooled to 170 nK. For their achievements Cornell, Wieman, and Wolfgang 
Ketterle at MIT received the 2001 Nobel Prize in Physics. In November 2010 the first photon 
BEC was observed.  

The slowing of atoms by the use of cooling apparatus produced a singular quantum state 
known as a Bose condensate or Bose–Einstein condensate. This phenomenon was predicted in 
1925 by generalizing Satyendra Nath Bose's work on the statistical mechanics of (massless) 
photons to (massive) atoms. (The Einstein manuscript, once believed to be lost, was found in a 
library at Leiden University in 2005.) The result of the efforts of Bose and Einstein is the concept 
of a Bose gas, governed by Bose–Einstein statistics, which describes the statistical distribution of 
identical particles with integer spin, now known as bosons. Bosonic particles, which include the 
photon as well as atoms such as helium-4, are allowed to share quantum states with each other. 
Einstein demonstrated that cooling bosonic atoms to a very low temperature would cause them to 
fall (or "condense") into the lowest accessible quantum state, resulting in a new form of matter. 
 
http://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate 
 
_______________________________________________________________________ 
1. Bose-Einstein distribution function 

The Bose-Einstein distribution function is defined as 
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The total number of particles N should be given by 
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For very low temperatures, the chemical potential  is very close to zero and should be negative. 
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The chemical potential in a boson system must always be lower in energy than the ground state. 
 
((Example)) 
 

For N = 1022 and T = 1 K,  = -1.4 x 10-38 erg <0. 

 
2. Occupancy of the ground state 

Density of states for a particle of spin zero is given by 
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The number N (fixed) is expressed by 
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where )(TNe  is the number of atoms in excited states (the number of atoms in the normal phase) 

and ),0()(0 TfTN    is the number of atoms in the ground state (number of atoms in the 

condensed phase) 
Here we note that we must be cautious in substituting 
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At high temperature there is no problem. But at low temperatures there may be a pile-up of 

particles in the ground state  = 0; then we will get an incorrect result for N. This is because D() 
= 0 in the approximation we are using, whereas there is actually one state at  = 0. If this one 
state is going to be important, we should write 
 

)()()(
~  DD   

 
with g = 1, where )(  is the Dirac delta function. 
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Here we have 
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where 
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With x , Ne(T) can be rewritten as 
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Since the integral (for <1) is obtained as 
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Then we get 
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where )(2/3   is the zeta function and )1(2/3  = 2.61238, and nQ(T) is defined as 
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Fig. Plot of )(2/3   as a function of . )1(2/3  = 2.61238 

 
3. Einstein-Condensation temperature TE 

The temperature TE at which  = 1 is called the critical temperature for Bose condensation 
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We define the molar mass weight as  
 

MA = mNA 
 
and the molar volume as 
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Then the Einstein temperature is rewritten as 
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((Example)) 
For liquid 4He 
 

VM = 27.6 cm3/mol, MA = 4 g/mol. 
 

TE = 3.13672 K. 
 

Note that the density  is given by 
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For Rb atom; 
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TE = 91.8 mK. 
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For Na atom 
 

968.0
M

A

V

M  g/cm3. MA = 22.98977 g/mol 

 

74976.23


A
M

M
V  cm3/mol 

 
TE = 603.258 mK. 

 
 
((Mathematica)) 
 

 
 
___________________________________________________________________________ 
4. Order parameter N0(T) 

We consider the temperature dependence of the occupancy number N0(T) of the ground state 
below TE. 
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with  e <1 ( should be negative). Since N is fixed, the temperature dependence of  can 
be derived from the above equation. 

For  = 1, NTN )(0 . The Einstein temperature TE is defined as 
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Then we get 
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From this Eq., we have 
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which is independent of N. The above equation reduces to 
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(i) T<TE.  

Near  = 1, there is an intersection of gN() and fN(). 
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Fig. Plot of N0(T)/N as a function of reduced temperature T/TE.  
 
(ii) T>TE. 
 

0)( Nf , 1)( Ng  

 
or 
 

NNgTN Ne  )1()(  , 0)( TNO  

 
5. Numerical results (I) 

We calculate fN() and gN() as a function of  to determine the value of  where two curves 
intersect. 
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Fig, Plot of fN() and gN() as a function of . N = 10. The parameter t (= T/TE)  
 

 
 

Fig. Plot of  e  vs t (= T/TE). N = 10 
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(b) N = 20. 
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6. Numerical results (II) 
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______________________________________________________________________ 
7. Possibility of Bose-Einstein condensation in two dimensions 
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We make a plot of g vs  in the very vicinity of  = 1 for <1, where N = 106. The value of g 

decreases as approaches  = 1 from the lower side of , but does not reduces to zero. The right-
hand side should be equal to zero when the critical temperature is finite and N becomes 

extremely large. In fact, the curve (g vs ) does not intersect with the g = 0 line, which means 
that the Bose-Einstein condensation does not occur in the 2D system. 
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Fig. Plot of g vs , where N = 106. 
 
_____________________________________________________________________________ 
In conclusion 

3D system: Bose-Einstein condensation 
2D system: No condensation occurs. 

 
The phenomena of the superconductivity and superfluidity are observed only for the 3D system. 
 
8. Heat capacity 
The total energy is given by 
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Note that there is no contribution from  = 0 state. 
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Plot of )(2/5  as a function of .  )1(2/5  1.34149. 

 
________________________________________________________________________ 
Then the ratio is given by 
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Here we note that 
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The heat capacity CV is obtained as 
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for T<TE, where t is the reduced temperature, 
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From the numerical calculation, the parameter  can be evaluated as a function of t 
 

 
 

Fig. Plot of  vs a reduced temperature t above TE. 
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The heat capacity CV is evaluates as 
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Fig. Normalized heat capacity vs a reduced temperature t (= T/TE). 
 
((Mathematica)) 
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Heat capacity of the Bose-Einstein condensation

Clear"Global`";

k1t_ : PolyLog3

2
,  

PolyLog 3

2
, 1

t32
;

Lamdat_ : Moduleeq1, eq2, 1,

eq1  FindRootk1t  0, , 0.1, 1; 1   . eq11;

Interpolation and its derivative

E1t_ : t
PolyLog 5

2
, Lamdat

PolyLog 3

2
, Lamdat

;

g1  Tablet, E1t, t, 1, 10, 0.01; g11  Interpolationg1;

CU  g11';

CU :heat capacity normalized by 3
2

NkB  for T>TE

CD: heat capacity normalized by 3
2

NkB  for T<TE

CDt_ : 1.2837825 t32;
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CDU  Which0  t  1, CDt, t  1, CUt;

p1  PlotCDU, t, 0, 3, PlotStyle  Red, Thick,

AxesLabel  "t", "CVt3

2
NkB";

p2 

Graphics
TextStyle"Heat capacity of BE condensation", Black, 12,

2.5, 0.4, Green, Thick, Line1, 0, 1, CD1,

Dashed, Thin, Black, Line0, 1, 3, 1 ;

Showp1, p2
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