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Abstract 
As an example we consider a Na atom, which has an electron configuration of 

(1s)2(2s)2(2p)6(3s)1. The 3s electrons in the outermost shell becomes conduction electrons 
and moves freely through the whole system. The simplest model for the conduction 
electrons is a free electron Fermi gas model. In real metals, there are interactions between 
electrons. The motion of electrons is also influenced by a periodic potential caused by 
ions located on the lattice. Nevertheless, this model is appropriate for simple metals such 
as alkali metals and noble metals. When the Schrödinger equation is solved for one 
electron in a box, a set of energy levels are obtained which are quantized. When we have 
a large number of electrons, we fill in the energy levels starting at the bottom. Electrons 
are fermions, obeying the Fermi-Dirac statistics. So we have to take into account the 
Pauli’s exclusion principle. This law prohibits the occupation of the same state by more 
than two electrons. 

Sommerfeld’s involvement with the quantum electron theory of metals began in the 
spring of 1927. Pauli showed Sommerfeld the proofs of his paper on paramagnetism. 
Sommerfeld was very impressed by it. He realized that the specific heat dilemma of the 
Drude-Lorentz theory could be overcome by using the Fermi-Dirac statistics (Hoddeeson 
et al.).1 

Here we discuss the specific heat and Pauli paramagnetism of free electron Fermi gas 
model. The Sommerfeld’s formula are derived using Mathematica. The temperature 
dependence of the chemical potential will be discussed for the 3D and 1D cases. We also 
show how to calculate numerically the physical quantities related to the specific heat and 
Pauli paramagnetism by using Mathematica, based on the physic constants given by 
NIST Web site (Planck’s constant ħ, Bohr magneton B, Boltzmann constant kB, and so 
on).2 This lecture note is based on many textbooks of the solid state physics including 
Refs. 3 – 10.  
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1. Schrödinger equation3-10 
A. Energy level in 1D system 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the electron in the orbital.  

The orbital is defined as a solution of the wave equation for a system of only one 
electron:one-electron problem. 

Using a periodic boundary condition: )()( xLx kk   , we have 
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where n = 0, ±1, ±2,…, and L is the size of the system. 
 
B. Energy level in 3D system 

We consider the Schrödinger equation of an electron confined to a cube of edge L.  
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
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The wavefunctions are of the form of a traveling plane wave. 
rk

k r  ie)( , (4) 
with 
 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 

 
The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
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Here 
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So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

((The Pauli’s exclusion principle)) 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
 

,k , ,k . 

 
In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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where the sphere of radius kF containing the occupied one-electron levels is called the 
Fermi sphere, and the factor 2 is from spin degeneracy. 

The electron density n is defined by 
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The Fermi wavenumber kF is given by 
 

  3/123 nkF  . (9) 
 
The Fermi energy is given by 
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The Fermi velocity is 
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((Note)) 
The Fermi energy F can be estimated using the number of electrons per unit volume as 

F = 3.64645x10-15 n2/3 [eV] = 1.69253 n0
2/3 [eV], 

where n and n0 is in the units of (cm-3) and n = n0×1022. The Fermi wave number kF is 
calculated as 

kF = 6.66511×107 n0
1/3 [cm-1]. 

The Fermi velocity vF is calculated as 
vF = 7.71603×107 n0

1/3 [cm/s]. 
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Fig.1 Fermi energy vs number density n (= n0×1022 [cm-3]). 
 
2. Fermi-Dirac distribution function3-10 

The Fermi-Dirac distribution gives the probability that an orbital at energy  will be 
occupied in an ideal gas in thermal equilibrium 
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where  is the chemical potential and  = 1/(kBT). 
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(ii) f() = 1/2 at  = . 
 
(iii) For  - »kBT, f() is approximated by )()(   ef . This limit is called the 

Boltzman or Maxwell distribution. 
 
(iv) For kBT«F, the derivative -df()/d corresponds to a Dirac delta function having a 

sharp positive peak at  = . 
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
Fig.2 Fermi-Dirac distribution function f() at various T (= 0.002 – 0.02). kB = 1. (T = 

0) = F = 1. 
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
Fig.3 Derivative of Fermi-Dirac distribution function -df()/d at various T (= 0.002 – 

0.02). kB = 1. (T = 0) = F = 1. 
 
3. Density of states3-10 
A. 3D system 

There is one state per volume of k-space (2/L)3. We consider the number of one-
electron levels in the energy range from  to +d; D()d 
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where D() is called a density of states. Since 2/12 )/2( mk  , we have 

)2/()/2( 2/12 dmdk  . Then we get the density of states 
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Here we define )( F

AD   [1/(eV atom)] which is the density of states per unit energy per 
unit atom. 
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Then we have 
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This is the case when each atom has one conduction electron. When there are nv electrons 
per atom, DA(F) is described as9 
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For Al, we have F = 11.6 eV and nv = 3. Then DA(F) = 0.39/(eV atom). 
 
((Note)) Average energy 
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Here we make a plot of f()D () as a function of  using Mathematica. 
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
Fig.4 D()f() at various T (= 0.001 – 0.05). kB = 1. (T = 0) = F = 1. The constant a of 

D() (= a ) is assumed to be equal to 1. 
 
B. 2D system 

For the 2D system, we have 
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Since kdkmd 2)2/( 2 , we have the density of states for the 2D system as 
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which is independent of . 
 
C. 1D system 

For the 1D system we have 
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Thus the density of states for the 1D system is 
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4. Sommerfeld’s formula 

When we use a formula 
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the total particle number N and total energy E can be described by 
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First we prove that 
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Here we note that 
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Then we have a final form (Sommerfeld’s formula). 
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5. T dependence of the chemical potential 
We start with 
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For the 1D case, similarly we have 
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We now discuss the T dependence of  by using the Mathematica. 
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Fig.5 T dependence of chemical potential  for the 1D system. kB = 1. F = (T = 0) = 1. 
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Fig.6 T dependence of chemical potential  for the 3D system. kB = 1. F = (T = 0) = 1. 
 
6. Total energy and specific heat 

Using the Sommerfeld’s formula, the total energy U of the electrons is approximated 
by 
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The total number of electrons is also approximated by 
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Since 0/  TN , we have 
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The specific heat Cel is defined by 
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The second term is equal to zero. So we have the final form of the specific heat 
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In the above expression of Cel, we assume that there are N electrons inside volume V (= 
L3), The specific heat per mol is given by 
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where NA is the Avogadro number and )( F

AD   [1/(eV at)] is the density of states per 
unit energy per unit atom. Note that 
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or 

 (mJ/mol K2) = 2.35715 )( F
AD  . (33) 

 
We now give the physical interpretation for Eq.(32). When we heat the system from 0 

K, not every electron gains an energy kBT, but only those electrons in orbitals within a 
energy range kBT of the Fermi level are excited thermally. These electrons gain an energy 
of kBT. Only a fraction of the order of kBT D(F) can be excited thermally. The total 
electronic thermal kinetic energy E is of the order of (kBT)2 D(F). The specific heat Cel is 
on the order of kB

2TD(F).  
 
((Note)) 

For Pb,   = 2.98, )( F
AD  =1.26/(eV at) 

For Al   = 1.35, )( F
AD  =0.57/(eV at) 

For Cu   = 0.695, )( F
AD  =0.29/(eV at) 

 
__________________________________________________________________ 
7. Pauli paramagnetism 

The magnetic moment of spin is given by 

ˆ z  
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mechanical operator). Then the spin Hamiltonian (Zeeman energy) is described by 
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in the presence of a magnetic field, where the Bohr magneton µB is given by 
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(e>0). 
 
(i) The magnetic moment antiparallel to H: Note that the spin state is z . 

The energy of electron is given by 
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(ii) The magnetic moment parallel to H. Note that the spin state is z . 

The energy of electron is given by 
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The magnetic moment M is expressed by 
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B
B

B

BB

dfHDdfHDNNM


 )()()()([
2

)( , (39) 

 
or 
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2

2
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HDd
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DH
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





















 (40) 
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Here we use the relation; )()
)(

( F

f 







  (see Fig.3). 

The susceptibility (M/H) thus obtained is called the Pauli paramagnetism. 
 

)(2
FBp D   . (41) 

 
Experimentally we measure the susceptibility per mol, p (emu/mol) 
 

)(
)( 22

F
A

ABA
F

BP DNN
N

D   , (42) 

 
whereB

2NA = 3.23278×10-5 (emu eV/mol) and DA(F) [1/(eV atom)] is the density of 
states per unit energy per atom. Since 
 

)(
3

1 22
F

A
BA DkN   , (43) 

 
we have the following relation between P (emu/mol) and  (mJ/mol K2), 
 

 51037148.1 P . (44) 
 
((Exampl-1)) Rb atom has one conduction electron. 

 = 2.41 mJ/mol K2, P = (1.37x10-5)×2.41 (emu/mol) 
1 mol = 85.468 g 
P =0.386×10-6 emu/g (calculation) 

((Exampl-2)) K atom has one conduction electron. 
 = 2.08 mJ/mol K2, P = (1.37x10-5)×2.08 (emu/mol) 
1 mol = 39.098 g 
P =0.72x10-6 emu/g (calculation) 

((Exampl-3)) Na atom has one conduction electron. 
 = 1.38 mJ/mol K2, P = (1.37x10-5)×1.38 (emu/mol) 
1 mol = 29.98977 g 
P =0.8224x10-6 emu/g (calculation) 

 
The susceptibility of the conduction electron is given by 

 
3/23/ PPPLP   , (45) 

 
where L is the Landau diamagnetic susceptibility due to the orbital motion of conduction 
electrons. 

Using the calculated Pauli susceptibility we can calculate the total susceptibility: 
 

Rb:  = 0.386×(2/3)×10-6 = 0.26×10-6 emu/g 
K:  = 0.72×(2/3)x10-6 = 0.48×10-6 emu/g 
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Na:  = 0.822×(2/3)×10-6 = 0.55×10-6 emu/g 
 
These values of  are in good agreement with the experimental results.6 
 
8. Physical quantities related to specific heat and Pauli paramagnetism 

Here we show how to evaluate the numerical calculations by using Mathematica. To 
this end, we need reliable physics constant. These constants are obtained from the NIST 
Web site: http://physics.nist.gov/cuu/Constants/index.html 
 

Planck’s constant,  =1.05457168×10-27 erg s 
Boltzmann constant kB = 1.3806505×10-16 erg/K 
Bohr magneton B = 9.27400949×10-21 emu 
Avogadro’s number NA = 6.0221415×1023 (1/mol) 
Velocity of light c = 2.99792458×1010 cm/s 
electron mass  m = 9.1093826×10-28 g 
electron charge e = 1.60217653×10-19 C 
   e = 4.803242×10-10 esu (this is from the other source) 
1 eV = 1.60217653×10-12 erg 
1 emu = erg/Gauss 
1mJ = 104 erg 

 
Using the following program, one can easily calculate many kinds of physical 

quantities. Here we show only physical quantities which appears in the previous sections. 
 
9. Liquid 3He 
A 3He refrigerator uses 3He to achieve temperatures of 0.2 to 0.3 K. A dilution 
refrigerator uses a mixture of 3He and 4He to reach cryogenic temperatures as low as a 
few thousandths of a K.  

An important property of 3He, which distinguishes it from the more common 4He, is 
that its nucleus is a fermion since it contains an odd number of spin 1/2 particles. 4He 
nuclei are bosons, containing an even number of spin 1/2 particles. This is a direct result 
of the addition rules for quantized angular momentum. At low temperatures (about 2.17 
K), 4He undergoes a phase transition: A fraction of it enters a superfluid phase that can be 
roughly understood as a type of Bose-Einstein condensate. Such a mechanism is not 
available for 3He atoms, which are fermions. However, it was widely speculated that 3He 
could also become a superfluid at much lower temperatures, if the atoms formed into 
pairs analogous to Cooper pairs in the BCS theory of superconductivity. Each Cooper 
pair, having integer spin, can be thought of as a boson. During the 1970s, David Lee, 
Douglas Osheroff and Robert Coleman Richardson discovered two phase transitions 
along the melting curve, which were soon realized to be the two superfluid phases of 
helium-3. The transition to a superfluid occurs at 2.491 mK on the melting curve. They 
were awarded the 1996 Nobel Prize in Physics for their discovery. Tony Leggett won the 
2003 Nobel Prize in Physics for his work on refining understanding of the superfluid 
phase of helium-3.[23] 
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In zero magnetic field, there are two distinct superfluid phases of 3He, the A-phase 
and the B-phase. The B-phase is the low-temperature, low-pressure phase which has an 
isotropic energy gap. The A-phase is the higher temperature, higher pressure phase that is 
further stabilized by a magnetic field and has two point nodes in its gap. The presence of 
two phases is a clear indication that 3He is an unconventional superfluid (superconductor), 
since the presence of two phases requires an additional symmetry, other than gauge 
symmetry, to be broken. In fact, it is a p-wave superfluid, with spin one, S=1, and angular 
momentum one, L=1. The ground state corresponds to total angular momentum zero, 
J=S+L=0 (vector addition). Excited states are possible with non-zero total angular 
momentum, J>0, which are excited pair collective modes. Because of the extreme purity 
of superfluid 3He (since all materials except 4He have solidified and sunk to the bottom of 
the liquid 3He and any 4He has phase separated entirely, this is the most pure condensed 
matter state), these collective modes have been studied with much greater precision than 
in any other unconventional pairing system. 
http://en.wikipedia.org/wiki/Helium-3 
 

 
 
The atom 3He has spin 1/2 and is a fermion. Here we calculate the Fermi velocity, Hermi 
energy, and Fermi temperature for 3He at T = 0 K, viewed as a gas of noninteracting 
fermions. The density of the liquid is 0.081 g/cm3. We also calculate the heat capacity at 
low temperatures for T<<TF. the experimental value is given as 
 

CV = 2.89 NkBT. 
 
 
Liquid 3He as a fermion 
 

spin I = 1/2.  
density  = 0.081 g/cm3, 
m = 3.160293 u 

 
The number density n; 
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V

Nm
   

mV

N
n


  = 1.543 x 1028/m3 

 
The Fermi energy is given by 
 

3/22
2

)3(
2

n
mF  

  = 0.3924 meV 

 
The Fermi temperature is defined as 
 


B

F
F k

T


4.55 K 

 
The Fermi velocity is given by 
 

m
v F

F

2
  = 154.79 m/s 

 
The heat capacity is given by 
 

F
B T

T
NkC 2

2

1 =1.0837 NkBT 

 
 
((Mathematica)) Liquid 3He 
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Clear"Global`";

rule1  NA  6.02214179 1023, u  1.660538782 1027,

eV  1.602176487  1019, kB  1.3806504  1023,

h  6.62606896  1034, —  1.05457162853  1034, gram  103,

cm  102, mol  NA,   0.081 gram  cm3, m  3.160293 u ;

n1 


m
. rule1

1.543511028

F 
—2

2 m
3 2 n123 . rule1

6.286841023

F

eV
. rule1

0.000392394

TF 
F

kB
. rule1

4.55353

vF 
2 F

m
. rule1

154.79

1

2
2

1

TF
. rule1

1.08373  
 
 
10. Conclusion 

The temperature dependence of the specific heat is discussed in terms of the free 
electron Fermi gas model. The specific heat of electrons is proportional to T. The 
Sommerfeld’s constant  for Na is 1.38 mJ/(mol K2) and is close to the value [1.094 
mJ/(mol K2)] predicted from the free electron Fermi gas model. The linearly T 
dependence of the electronic specific heat and the Pauli paramagnetism give a direct 
evidence that the conduction electrons form a free electron Fermi gas obeying the Fermi-
Dirac statistics. 
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It is known that the heavy fermion compounds have enormous values, two or three 
orders of magnitude higher than usual, of the electronic specific heat. Since  is 
proportional to the mass, heavy electrons with the mass of 1000 m (m is the mass of free 
electron) move over the system. This is due to the interaction between electrons. A 
moving electron causes an inertial reaction in the surrounding electron gas, thereby 
increasing the effective mass of the electron. 
 
________________________________________________________________________ 
REFERENCES 
1. L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, Out of the Crystal Maze 

(Oxford University Press, New York, 1992). 
2. NIST Web site: http://physics.nist.gov/cuu/Constants/index.html 
3. A.H. Wilson, The Theory of Metals (Cambridge University Press, Cambridge, 

1954). 
4. A.A. Abrikosov, Introduction to the Theory of Normal Metals (Academic Press, 

New York, 1972). 
5. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart, and Wilson, 

New York, 1976). 
6. C. Kittel, Introduction to Solid State Physics, seventh edition (John Wiley and 

Sons, New York, 1996). 
7. C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and 

Company, New York, 1980). 
8 S.L. Altmann, Band Theory of Metals (Pergamon Press, Oxford, 1970). 
9. H.P. Myers, Introductory Solid State Physics (Taylor & Francis, London, 1990). 
10. H. Ibach and H. Lüth, Solid-State Physics An Introduction to Principles of 

Materials Science (Springer Verlag, Berlin, 2003). 
 


