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Brian David Josephson, FRS (born 4 January 1940; Cardiff, Wales) is a Welsh physicist. He 
became a Nobel Prize laureate in 1973 for the prediction of the eponymous Josephson effect. As 
of late 2007, he was a retired professor at the University of Cambridge, where he is the head of 
the Mind–Matter Unification Project in the Theory of Condensed Matter (TCM) research group. 
He is also a fellow of Trinity College, Cambridge.  
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1. DC Josephson junction 
 
 

 
Fig. Schematic diagram for experiment of DC Josephson effect. Two superconductors 

SI and SII (the same metals) are separated by a very thin insulating layer (denoted 
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by green). A DC Josphson supercurrent (up to a maximum value Ic) flows without 
dissipation through the insulating layer. 

 
Let 1  be the probability amplitude of electron pairs on one side of a junction. Let 2  

be the probability amplitude of electron pairs on the other side. For simplicity, let both 
superconductors be identical. 
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where T  is the effect of the electron-pair coupling or (transfer interaction across the 
insulator). T(1/s) is the measure of the leakage of 1  into the region 2, and of 2  into the 
region 1. 
Let 
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Then we have 
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where 
 

12   . 
 
Now equate the real and imaginary parts of Eqs.(3) and (4), 
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If 21 nn   as for identical superconductors 1 and 2, we have 
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The current flow from the superconductor S1 and to the superconductor S2 is proportional 

to 
t

n


 2 . J is the current of superconductor pairs across the junction 

 
)sin( 120   JJ , 

 
where J0 is proportional to T (transfer interaction). 
 

sin0II  . (5) 

 
2. AC Josephson effect 
 

 
Fig. Schematic diagram for experiment of AC Josephson effect. A finite DC voltage is 

applied across both the ends. 
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Let a dc voltage V be applied across the junction. An electron pair experiences a potential 
energy difference qV on passing across the junction (q = -2e). We can say that a pair on 
one side is at –eV and a pair on the other side is at eV. 
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This equation breaks up into the real part and imaginary part, 
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From these two equations with 21 nn  , 
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When V = V0 = constant, we have 
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The current oscillates with frequency 
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A DC voltage of 1 eV produces a frequency of 483.5935 MHz. 
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((Note)) 
Suppose that V = V0 = 1 V. The corresponding frequency is estimated from the relation, 
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3. I-V characteristic of Josephson tunneling junction 

We now consider the I-V characteristic of the Josephson tunneling junction where a 
insulating layer is sandwiched between two superconducting layers (the same type). A capacitor 
is formed by these two superconductors. In this type of Josephson junctions, one can see the 
quasiparticle I-V curve which is different with increasing voltage and decreasing voltage 
(hysteresis). There are two voltage states, 0 V and 2/e, where  is an energy gap of each 
superconductor. The I-V curve is characterized by (i) maximum Josephson tunneling current of 
Cooper pairs at V = 0 and (ii) Quasi-particle tunneling current (V>2/e). 
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Fig. Schematic diagram of quasiparticle I-V characteristic (usually observed in a S-I-S 

Josephson tunneling-type). Josephson current (up to a maximum value Ic) flows at V = 0. 
 is an energy gap of the superconductor . The DC Josepson supercurrent flows under V 
= 0. For V>2/e the quasiparticle tunneling current is seen. 

 
The strong nonlinearity in the quasiparticle I-V curve of a tunneling junction is not an 

appropriate to the application to the SQUID element. This nonlineraity can be removed by the 
use of thin normal film deposited across the electrodes. In this effective resistance is a parallel 
combination of the junction. The I-V characteristic has no hysteresis. Such behavior is often 
observed in the bridge-type Josephson junction where two superconducting thin films are 
bridged by a very narrow superconducting thin film. 
 

 
Fig. Schematic diagram of I-V characteristic of a Josephson junction (usually observed in 

bridge-type juntion), which is reversible on increasing and decreasing V. A Josephson 
supercurrent flows up to Ic at V = 0. A transition occurs from the V = 0 state to a finite 
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voltage state for I>Ic.. Above this voltage the I-V characteristic exhibits an Ohm’s law 
with a finite resistance of the Junction. The current has a oscillatory component of 
angular frequency  (= 2eV/ħ) (the AC Josephson effect). 

 
________________________________________________________________________ 
4. Flux quantization 

We start with the current density 
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Suppose that 
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The path of integration can be taken inside the penetration depth where sJ =0. 
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where  is the magnetic flux. Then we find that 
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where n is an integer. The phase  of the wave function must be unique, or differ by a multiple of 
2 at each point, 
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The flux is quantized. When |q*| = 2|e|, we have a magnetic quantum fluxoid; 
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((Note)) 
 

The current flows along the ring. However, this current flows only on the surface boundary 
(region from the surface to the penetration depth ). Inside of the system (region far from the 
surface boundary), there is no current since c/4 JH   and H = 0. 
 

 
5. DC SQUID (double junctions): quantum mechanics 

DC SQUID consists of two points contacts in parallel, forming a ring. Each contact forms a 
Josephson junctions of superconductor 1, insulating layer, and superconductor 2 (S1-I-S2). 
Suppose that a magnetic flux  passes through the interior of the loop. 

 
Fig. Schematic diagram of superconducting quantum interference device. 1 and 2 refer to 

two point-contact weak links. The rest of the circuit is strongly superconducting. 
 
Here we have 
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where )( 111 ab    is the phase difference between the superconductors a and b through the 

junction 1 and )( 222 ab    are is the phase difference between the superconductors a and b 

through the junction 2.  
 
When B = 0 (or  = 0), we have 021  . In general, we put the form 
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The total current is given by 
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The current varies with   and has a maximum of 2Ic when s
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The simple two point contact device corresponds to a two-slit interference pattern, for which the 
physically interesting quantity is the modulus of the amplitude rather than the square modulus, as 
it is for optical interference patterns. 
 
6 Analogy of the diffraction with double slits and single slit 
 

 
Fig. Diffraction effect of Josephson junction. A magnetic field B along the z direction, which 

is penetrated into the junction (in the normal phase). 
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We consider a junction (1) of rectangular cross section with magnetic field B applied in the plane 
of the junction, normal to an edge of width w, 
 

]sin[
2

1

10   lA d
c

q
JJ


 , 

 
with q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW  ), LtJIc 0 , 
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The total current is given by 
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The short period variation is produced by interference from the two Josephson junctions, while 
the long period variation is a diffraction effect and arises from the finite dimensions of each 
junction. The interference pattern of |I|2 is very similar to the intensity of the Young’s double 
slits experiment. If the slits have finite width, the intensity must be multiplied by the diffraction 
pattern of a single slit, and for large angles the oscillations die out. 
 
((Young’s double slit experiment)) 

We consider the Young’s double slits (the slits are separated by d). Each slit has a finite 
width a. 
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Fig. Geometric construction for describing the Young’s double-slit experiment (not to scale). 
 
((double slits)) 
E is the electric field of a light with the wavelength . d is the separation distance between the 
centers of the slits. 
 

 
Fig. A reconstruction of the resultant phasor ER which is the combination of two phasors (E0). 
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where the phase difference  is given by 
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((single slit)) 

We assume that each slit has a finite width a. 
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Fig. Phaser diagram for a large number of coherent sources. All the ends of phasors lie on the 
circular arc of radius R. The resultant electric field magnitude ER equals the length of the 
chord. 
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where the phase difference  is given by 
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 . Then the resultant intensity I for the 

double slits (the distance d) (each slit has a finite width a) is given by 
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The maximum of IB is 
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The critical current is a periodic function of the external magnetic flux. 

 
 
Fig. Ideal case for the IB/Ic vs ext/0 curve in the DC SQUID, where IB is the maximum 

supercurrent. IB = 2 Ic when  ext/0 = n (integer) and IB = 0 for ext/0 = n +1/2. 
 

We consider the general case (but still L = 0 and J »1) 
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From the addition of Eqs.(41) and (42) with the help of the relation Eq.(43), we have 
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When we introduce a new parameter 
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We are interested in the DC current-voltage characteristic so we need to determine the time 
averaged voltage 
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When this equation for the voltage is compared with that for one Josephson junction with J»1 
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We find that the critical current is )cos(2
0

ext
cI  . This means that the critical current is 2Ic for 

next  0/  (integer) and zero for next  0/ +1/2. In other words, the critical current is a 

periodic function of   with a period 0 . However, the actual critical current does not oscillate 

between 0 and 2Ic because of the finite self-inductance L. In the above model, L (or  = 0) is 
assumed to be zero. The critical current varies between 2Ic and finite value depending on the 
value of  (see the detail in Sec.7.1). 

When the total current IB is constant, the voltage across the DC SQUID periodically changes 
with the external magnetic flux. This is the phenomenon one exploit to create the most sensitive 
magnetic field detection. 
 
 
This figure is obtained from the Instruction manual of Mr. SQUID.9 

 
 
Fig. Detected voltage vs the magnetic flux . The current IB is kept at fixed value which is 

a little larger than 2Ic. The detected voltage shows a maximum for  = (n+1/2)0, and a 
minimum for  = n0. The detected voltage is a periodic function of  with a period of 
0. (This figure is copied from the User Guide of Mr SQUID9). 
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((Mr. SQUID)) 
 
We use Mr SQUID for the measurement on the properties of the Josephson effect. 
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APPENDIX-1 
Current density for the superconductors 

We consider the current density for the superconductor.  is the order parameter of the 
superconductor and m* and q* are the mass and charge of the Cooper pairs. The current density 
is invariant under the gauge transformation. 
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The density is also gauge independent. 
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The last term is pure imaginary. Then the current density is obtained as 
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Note that Js (or vs) is gauge-invariant. Under the gauge transformation, the wave function is 
transformed as 
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So the current density is invariant under the gauge transformation. 
 
 


