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A maser is a device that produces coherent electromagnetic waves through 

amplification due to stimulated emission. Historically the term came from the acronym 
"microwave amplification by stimulated emission of radiation", although modern masers 
emit over a broad portion of the electromagnetic spectrum. This has led some to replace 
"microwave" with "molecular" in the acronym, as suggested by Townes. When optical 
coherent oscillators were first developed, they were called optical masers, but it has 
become more common to refer to these as lasers. 
 

Theoretically, reflecting principles previously discussed by Joseph Weber at the June 
1952 conference of the Institute of Radio Engineers[1], the principle of the maser was 
described by Nikolay Basov and Alexander Prokhorov from Lebedev Institute of Physics 
at an All-Union Conference on Radio-Spectroscopy held by USSR Academy of Sciences 
in May 1952. They subsequently published their results in October 1954. Independently, 
Charles H. Townes, J. P. Gordon, and H. J. Zeiger built the first maser at Columbia 
University in 1953. The device used stimulated emission in a stream of energized 
ammonia molecules to produce amplification of microwaves at a frequency of 24 GHz. 
Townes later worked with Arthur L. Schawlow to describe the principle of the optical 
maser, or laser, which Theodore H. Maiman first demonstrated in 1960. For their 
research in this field Townes, Basov and Prokhorov were awarded the Nobel Prize in 
Physics in 1964. 
 
________________________________________________________________________ 
Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning 
physicist and educator. Townes is known for his work on the theory and application of 
the maser, on which he got the fundamental patent, and other work in quantum 
electronics connected with both maser and laser devices. He shared the Nobel Prize in 
Physics in 1964 with Nikolay Basov and Alexander Prokhorov.  
 
http://en.wikipedia.org/wiki/Charles_Hard_Townes 
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http://www.nobelprize.org/nobel_prizes/physics/laureates/1964/townes.jpg 
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We consider the parity operator ̂ , such that 
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These two states are the eigenkets of ̂ . 
 

We now consider the Hamiltonain Ĥ . 
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The symmetry of two physical configuration suggests that  
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What about the off-diagonal elements? The vanishing of 1ˆ2 H  would mean that a 

molecule initially in the state 1  would remain in that state. If 01ˆ2 H , there is a 

small amplitude for the system to mix between the two states. 
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This Hamiltonian commutates with the parity operator: 0̂]ˆ,ˆ[ H .  
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((Eigenvalue problem)) 
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((Application of electric field)) 
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When the electric filed is applied along the x axis (the axis of the electric dipole 
moment), the Hamiltonian is changed into 
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The new Hamiltonian Ĥ  does not commutate with the parity operator ̂ . 
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In a weak electric field 
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Let us consider NH3 in a region where  is weak but where 2 has a strong gradient in the 
x-direction (i.e., along the axis of molecules). 
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The molecules in the state s  are subjected to a force parallel to the x axis: 
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Similarly, the molecules in the state a  are subjected to an opposite force: 
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This is the basis of the method which is used in the ammonia maser to sort the molecules 
and select those in the higher energy state. 
 

Maser cavity (frequency 0)
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In the ammonia maser, the beam with molecules in the state a

(0)  and with the higher 

energy is sent through a resonant cavity. 
Here we note that 
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The Hamiltonian Ĥ is given by 
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in the presence of a time-dependent electric field . We assume that 
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We set up the Schrödinger equation 
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First we write 
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We consider the case: 
 

(t)  20 cost  0 (eit  eit ) 
 
Then we have 
 

 
 


i d s (t)

dt
 0[e

i( 0 ) t  e i( 0 ) t] a(t)  

 


i d a (t)

dt
 0[e

i( 0 )t  e i( 0 )t ] s (t)  



9 
 

 
((Rotating wave approximation)) 

The terms with ( + 0) oscillate very rapidly about an average value of zero and, 

therefore do not contribute very much on the average to the rate of change of . 
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Let us suppose that it takes the time T to go through the cavity. If we make the cavity 

just long enough so that 0T /   / 2 , then a molecules which enters in the upper state 

a
(0)  will certainly leave it in the lower state s

(0) . 
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In other words, its energy is decreased, and the loss of energy cannot go anywhere 
else but into the machinery which generate the field. 
 

In summary, the molecules enter the cavity, the cavity field-oscillating at exactly the 
right frequency-induces transition from the upper to the lower states, and the energy 
released is fed into the oscillatory field. The molecular energy is converted into the 
energy of an external electromagnetic field. 
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The solution is as follows. 
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The probabilities are given by 
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Note that 
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((Special case)) 

When 0  and 0 , we have 
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________________________________________________________________________ 
((Mathematica)) 
Clear"Global`"; expr_ : expr . Complexa_, b_  Complexa, b;

D=w - w0, 02  2

4
 , G0 = m ¶0

Ñ

eq1   Dat, t  0 Exp  t st;

eq2   Dst, t  0 Exp  t at;

s11  DSolveeq1, eq2, a0  1, s0  0, at, st, t 
Simplify,   0, 0  0 &;

s12  s11 .  4 02  2  2 ,
1
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  Simplify;

at_  at . s121  FullSimplify
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Pa  at at  FullSimplify

2  4 2  2  4 2 Cos2 t 
8 2

Pa1  Pa .  
4 02  2

2
  Simplify

2 02  2  2 02 Cost 4 02  2 
4 02  2

Ps  st st  FullSimplify

02 Sint 2
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4 02  2

2
  Simplify

4 02 Sin 1
2

t 4 02  2 2

4 02  2

Pa1  Ps1  Simplify

1

Pa2  Pa1 .   0  Simplify, 0  0 &

Cost 02

Ps2  Ps1 .   0  Simplify, 0  0 &

Sint 02
 


