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Felix Bloch was born in Zürich, Switzerland to Jewish parents Gustav and Agnes Bloch. 
He was educated there and at the Eidgenössische Technische Hochschule, also in Zürich. 
Initially studying engineering he soon changed to physics. During this time he attended 
lectures and seminars given by Peter Debye and Hermann Weyl at ETH Zürich and 
Erwin Schrödinger at the neighboring University of Zürich. A fellow student in these 
seminars was John von Neumann. Graduating in 1927 he continued his physics studies at 
the University of Leipzig with Werner Heisenberg, gaining his doctorate in 1928. His 
doctoral thesis established the quantum theory of solids, using Bloch waves to describe 
the electrons. 

He remained in European academia, studying with Wolfgang Pauli in Zürich, Niels 
Bohr in Copenhagen and Enrico Fermi in Rome before he went back to Leipzig assuming 
a position as privatdozent (lecturer). In 1933, immediately after Hitler came to power, he 
left Germany, emigrating to work at Stanford University in 1934. In the fall of 1938, 
Bloch began working with the University of California at Berkeley 37" cyclotron to 
determine the magnetic moment of the neutron. Bloch went on to become the first 
professor for theoretical physics at Stanford. In 1939, he became a naturalized citizen of 
the United States. During WW II he worked on nuclear power at Los Alamos National 
Laboratory, before resigning to join the radar project at Harvard University. 

After the war he concentrated on investigations into nuclear induction and nuclear 
magnetic resonance, which are the underlying principles of MRI. In 1946 he proposed the 
Bloch equations which determine the time evolution of nuclear magnetization. He and 
Edward Mills Purcell were awarded the 1952 Nobel Prize for "their development of new 
ways and methods for nuclear magnetic precision measurements." In 1954–1955, he 
served for one year as the first Director-General of CERN. In 1961, he was made Max 
Stein Professor of Physics at Stanford University. 
 

 
http://en.wikipedia.org/wiki/Felix_Bloch 
____________________________________________________________________ 
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1. Bloch theorem 
Here we present a restricted proof of a Bloch theorem, valid when )(x  is non-

degenerate. That is, when there is no other wavefunction with the same energy and 
wavenumber as )(x . 
 
We assume that a periodic boundary condition is satisfied, 
 

)()( xNax   . 
 
The potential energy is periodic in a period a, 
 

)()( xVaxV  . 
 
We now consider the wavefunction )( ax  . For convenience we rewrite this equation 
as 
 

)()()( xaTax   . 
 
Then we have 
 

)()(),(

)(),(

)(),()(),()(

xaTpxH

axpxH

axpaxHxpxHaT










 

 
where the Hamiltonian is invariant under the translation by a. 
 

),(),( pxHpaxH  . 
 
This means that 
 

)(),(),()( aTpxHpxHaT  . 
 
Suppose that )(x  is the eigenfunction of )),(( pxHH   with the energy E. 
 

)()( xExH   . 
 
Then we have 
 

)()()()( xaHTxHaT   . 
 
or 
 

)]()([)()()]()([ xaTExHaTxaTH   . 
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This means that )()( xaT  is the eigenfunction of H  with the energy E. Since )(x is 
nondegenerate, )()()( xaTax    is described by 
 

)()( xCax   , 
 
where C is a constant. Similarly we have 
 

)()()2( 2 xCaxCax    
 

)()()2()3( 32 xCxCCaxCax    
…………………………………………………………….. 
 

)()()( xxCNax N     (from the periodic condition). 
 
Then we have 
 

1NC  
 

Note that C is a complex number. 1N
C  or 1C .  

 
((Example)) 
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Fig. The solution of C20 = 1 in the complex plane. 

 

ieC  , 1 iNN eC  
 
Then we get 
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sN  2  (s: integer) 
 
or 
 

kasa
L

a
Na

s

N

s


 222
 

 
where 
 

s
L

k
2

  and ikaeC   

 
((Bloch theorem)) 
 

)()( xeax k
ika

k    

 
or 
 

)()( xelax k
ikla

k    

 
where l is an integer. 
 
2. Brillouin zone in one dimensional system 

We know that the reciprocal lattice G is defined by 
 

n
a

G
2

 , (n: integer). 

 
When k is replaced by k + G, 
 

)()()( )( xexeax Gk
ika

Gk
aGki

Gk 


   , 

 
since 12  niiGa ee  . This implies that )(xGk  is the same as )(xk . 

 
)()( xx kGk   . 

 
or the energy eigenvalue of )(xGk is the same as that of )(xk , 

 

kGk EE  . 

 
Note that the restriction for the value of s arises from the fact that )()( xx kGk   . 
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)
2

(
22

N

s

aNa

s

L

s
k


 , 

 
where 
 

22

N
s

N
 . 

 

The first Brillouin zone is defined as 
a

k


 . There are N states in the first Brillouin zone. 

When the spin of electron is taken into account, there are 2N states in the first Brilloiun 
zone. Suppose that the number of electrons per unit cell is nc (= 1, 2, 3, …). Then the 
number of the total electrons is ncN. 
 
(a) nc = 1. So there are N electrons. N/2N = 1/2  (band-1: half-filled) 
 
(b) nc = 2. 2N/2N = 1     (band-1: filled). 
 
(c) nc = 3. 3N/2N = 1.5    (band-1: filled, band-2: half-filled). 
 
(d) nc = 4. 4N/2N = 2    (band-1: filled, band-2: filled). 
 
When there are even electrons per unit cell, bands are filled. Then the system is an 
insulator. When there are odd electrons per unit cell, bands are not filled. Then the system 
is a conductor. 
 
3. Bloch wavefunction 

Here we assume that 
 

)()( xuex k
ikx

k  . 

 
Then we have 
  

)()()( axueeaxueeax k
ikxika

k
ikaikx

k   , 

 
which should be equal to 
 

)()( xueexe k
ikxika

k
ika   , 

or 
uk(x  a)  uk (x), 

 
which is a periodic function of x with a period a. The solution of the Schrodinger 
equation for a periodic potential must be of a special form such that )()( xuex k

ikx
k  , 
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where )()( xuaxu kk  . In other words, the wave function is a product of a plane wave 

and a periodic function which has the same periodicity as a potential. 
Here we consider the 3D case. The solutions of the Schrödinger equation for a 

periodic potential must be of a special form: 
 

rk
kk rr  ieu )()(  (Bloch function), 

 
where 
 

)()( Trr kk  uu . 
 
Bloch functions can be assembled into localized wave packets to represent electrons that 
propagate freely through the potential of the ion cores. T is any translation vectors which 
is expressed by T = n1a1+n2a2+n3a3 (n1, n2, n3 are integers, a1, a2, a3 are fundamental 
lattice vectors). The function )(rku  can be expanded as follows. (Fourier transform) 
 

 


G

rG
Gkk r ieCu )( . 

 
where G is the reciprocal lattice vector. We use the same discussion for the periodic 
charge density in the x-ray scattering. 
 
Then the wave function in a periodic potential is given by 
 

...)( )()(  



 rGk

Gk
rk

k
G

rGk
Gkk r iii eCeCeC  

or 
 

.......)( )2(
2

)()()2(
2  











rGk

Gk
rGk

Gk
rk

k
rGk

Gk
rGk

Gkk r iiiii eCeCeCeCeC  

 
 
or 
 

...2

2....

2

2









GkGk

kGkGk

GkGk

kGkGkk

CC

CCC
 

 
using the Dirac ket vector. 
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k k+Gk-Gk-2G

O
p
a

2p
a

-
p
a-

2 p
a

G =
2p
a  

 
The eigenvalue-problem 
 

kkk  EH ˆ ,  or )()( xExH kkk   . 

 
Ek is the eigenvalue of the Hamiltonian and has the following properties. 
 

(i) Gkk  EE . 

(ii) kk  EE . 
 
The first property means that any reciprocal lattice point can serve as the origin of Ek. 
The relation kk  EE  is always valid, whether or not the system is centro-symmetric.  
 
The proof of this is already given using the time-reversal operator. The proof can be also 
made analytically as follows. 
 

)()( xExH kkk   , 

 

)()( ** xExH kkk    ( Ĥ is Hermitian), 

 
or 
 

)()( ** xExH kkk    . 

 
From the Bloch theorem given by 
 

)()( xeax k
ika

k   , 

or 

)()( xuex k
ikx

k  , and )()( ** xuex k
ikx

k
 , 

 
we have 

)()()()( **)(*)(* xexueaxueax k
ika

k
axik

k
axik

k    , 

or 
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)()( ** xeax k
ika

k 


   . 

 

Thus the wave functions )(xk and )(* xk  are the same eigenfunctions of )(ˆ aTx  with 

the same eigenvalue ikae . Thus we have 
 

)()(* xx kk   , 

 
with 
 

kk  EE . 
 
What does this relation mean? 

 
...)( )()(  




 rGk
Gk

rk
k

G

rGk
Gkk r iii eCeCeC  

 


G

rGk
Gkk r )(** )( ieC , 

or 

 



 

G

rGk
Gk

G

rGk
Gkk r )(*)(** )( ii eCeC . 

 
Then we have the relation 
 

GkCC  *
Gk , 

or 

GkGk   CC * . 

 
4. Properties of energy band 
(i) Gkk EE   

We consider the case of an infinitely small periodic potential. The curve Ek is 
practically the same as in the case of free electron, but starting at every point in reciprocal 
lattice at G = (2/a)n (n: integer). We have Ek+G = Ek, but for the dispersion curves that 
have a different origin. 
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Fig. The energy dispersion (Ek vs k) of electrons in the weak limit of periodic potential 

(the periodic zone scheme), where Gkk EE  . m→1. a→1. ħ→1. G→2n (n = 0, 

±1, ±…). 
 
(ii) kk EE   

 

 
 
Fig. The relation of E-k = Ek in the reciprocal lattice plane. k = ±/a is the boundary of 

the first Brillouin zone (|k|≤/a). 
 

It follows that from the condition ( kk EE  ), in Fig., E(1) = E(2). On taking →0, 

the group velocity defined by 2/)]1()2([ EE   reduces to zero (dk/dk→0). On applying 

the periodicity condition Gkk EE   this result can immediately be extended as follows. 

dk/dk→0 at k = 0, ±2/a, ±4/a,….. 
 

We now consider the value of this derivative at the Brillouin zone boundary. 
From the condition kk EE  ,  E(3) = E(4). 

From the condition Gkk EE  ,  E(3) = E(5). 

Therefore, we have   E(4) = E(5). 
 

On taking →0, the group velocity at the boundary of Brillouin zone is defined as 
2/)]4()5([ EE  , which reduces to zero (dk/dk→0). In other words, the group velocity 

(dEk/dk) is equal to zero at k = 0, ±G/2, ±G, ±3G/2, ±2G. 
 
5. Solution of the Schrödinger equation 
5.1 Secular equation 

We consider the Schrödinger equation of an electron in a periodic potential U(x) with 
a period a. 
 

)()()](
2

[
2

22

xExxU
dx

d

m kk  


, (1) 

 
where 
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G

iGx
GeUxU )(  [(G = n (2/a), n: integer)], 

 
with 
 

GG UU * , 

 
...)( )()(  




 xGki
Gk

ikx
k

G

xGki
Gk eCeCeCxk , 

 
with 
 

GkGk CC  * , 

 

 






 


















G

xGki
Gk

G

xGki
Gk

G

xiG
G

G

xGki
Gk eCEeCeUeGkC

m
)()(

'

'
'

)(2
2

)(
2


. 

 
Here we note that 
 

 





 

















G G

xGkixiG
GkG

G

xGki
Gk

G

xiG
G eeCUeCeUI

'

)('
'

)(

'

'
' . 

 
For simplicity, we put '" GGG   or GGG  "'  
 

 



 

'

)(
''

"

)"(
"

G G

xGki
GkGG

G G

xGki
GkGG eCUeCUI , 

 
where we have a replacement of variables: '," GGGG   in the second term. 
Then the Schrödinger equation is 
 

 






 

G

xGki
Gk

G G

xGki
GkGG

G

xGki
Gk eCEeCUeGkC

m
)(

'

)(
''

)(2
2

)(
2


, 

 
or 
 

0])(
2

[
'

''
2

2

  
G

GkGGGk CUCEGk
m


. 

 
When Gkk   
 

0)
2

(
'

''
2

2

  
G

GGkGGk CUCEk
m


. 
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Here we put 2
2

2
k

mk


 . 

 
0][

'
''   

G
GkGGGkGk CUCE , 

 
or 
 

0...)

(...][

34232

02324354









GkGGkGGkGkG

GkGkGGkGGkGGkGGkGk

CUCUCUCU

CUCUCUCUCUCE
  

 (2) 
 
When Gkk   in Eq.(2) 
 

0...)

(...][

443322

0223344









GkGGkGGkGGkG

kGkGGkGGkGGkGkk

CUCUCUCU

CUCUCUCUCUCE
, (3) 

 
When Gkk 2  in Eq.(2) 
 

0...)

(...][

5443322

022334









GkGGkGGkGGkG

GkkGGkGGkGGkGGkGk

CUCUCUCU

CUCUCUCUCUCE
.

 (4) 
The secular equation is expressed by 
 

0

3

2

2

3

323456

22345

2234

3223

4322

54322

654323
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GGGkGGG

GGGGGkGG

GGGGGGkG
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C

C

C

C

C

C

EUUUUUU

UEUUUUU

UUEUUUU

UUUEUUU

UUUUEUU

UUUUUEU

UUUUUUE












, 

 
with U0 = 0 for convenience, where we assume that Ck+mG =0 for m = ±4, ±5, ±6,…. 
 
5.2 Solution for the simple case 

Now we consider the simplest case: mixing of only the two states: k  and Gk   

(k≈/a. k-G = -/a, G ≈ 2/a). Only the coefficients Ck and Ck-G are dominant. 
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 0

0*

Gk
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GkG

Gk

C

C

EU

UE




. 

 
From the condition that the determinant is equal to 0, 
 

0))((
2   GGkk UEE  , 

 
or 

2

4)(
22

GGkkGkk U
E


  

. 

 
Now we consider that Gkk    ( Gkk   with k ≈ /a, Bragg reflection) 

 

0)(
22  Gk UE , 

 
or 
 

Gk UE   . 

 
Note that the potential energy U(x) is described by 

 
)cos(2)(

00 GxUUeUeUUxU G
iGx

G
iGx

G   , 

 
where we assume that UG is real: 
 

GGG UUU   * . 

 
At k = G = 2/a only the coefficients Ck-2G and Ck are dominant. In this case we have 

the secular equation only for Ck-2G and Ck.. 

 


































0

0

222
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Gk

k

GkG

Gk
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C

EU

UE




. 

 
The condition of det(M) = 0 leads to 
 

0
22

*
2 




 EU

UE

GkG

Gk




. 

 
Since Gkk 2  , we have 
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0)(
2

2
2  Gk UE , 

or 

Gk UE 2  . 

 
(a) 0GU ; 

For GkGk UUE    (upper energy level) 
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, 

 
or 
 

1
Gk

k

C

C
. 

 
Then the wave function is described by 

)
2

sin(2][)(
)

2
(

)()( Gx
eiCeeCeCeCx

x
G

ki

k
xGkiikx

k
xGki

Gk
ikx

k


 k , 

or 

)
2

(sin4)( 222 Gx
Cx kk  (upper energy level). 

 
For GkGk UUE    (lower energy level) 

 






























 0

0

Gk

k

GG

GG

C

C

UU

UU
, 

or 

1
Gk

k

C

C
. 

The wave function is described by 
 

)
2

cos(2][)(
)

2
()()( Gx

eCeeCeCeCx
x

G
ki

k
xGkiikx

k
xGki

Gk
ikx

k


 k , 

or 

)
2

(cos4)( 222 Gx
Cx kk  (lower energy level). 

 
(b) 0GU  
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)
2

(cos4)( 222 Gx
Cx kk  for Gk UE    (upper energy level), 

 
and 

)
2

(sin4)( 222 Gx
Cx kk  for Gk UE    (lower energy level). 

 
((Probability of finding electrons)) 

Comparison of the two standing wave solutions at k→/a is presented. Note that the 
wave motion is in phase with the lattice. 
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Fig. At k = /a, Bragg reflection of the electron arises, leading to two possible charge 

distributions f1(x) and f2(x). The case of UG<0 (attractive potential due to positive 
ions). f1(x) (red) probability of the wave function (lower energy level), f2(x) (green) 
probability of the wave function (upper energy level), and the potential energy 
U(x). The phases of f1(x) and U(x) are out of phase, while the phase of f2(x) and 
U(x) are in phase. When the electrons are close to the ions located at the lattice 
sites, the energy of the electrons becomes lower. When the electrons are far away 
from ions, on the other hand, the energy of the electrons becomes higher. (see the 
book of C. Kittel5 for more detail). 

 
((Eigenvalue problem for the system with only UG)) 
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Fig. The energy dispersion curves of Ek vs k with UG = -2 (red and yellow curves) and 
with UG→0 (blue curve). a→1. ħ→1. m →1. K = G→2. There are energy gaps 
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at k = ±G/2 = ±/a for the energy dispersion curve with UG = -2. The energy gap 
is 2|UG| there. Note that dEk/dk = 0 at k = G/2 = ±/a. 

 
5. 3. Eigenvalue problem for the system with UG, U2G, U3G, U4G, U5G, and U6G  
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Fig. The energy dispersion of Ek vs k for free electrons (in the limit of weak potential) 

and the Bloch electrons with UG, U2G, U3G, U4G, U5G, U6G (UG→-2, U2G→-2 
U3G→-2, U4G→-2, U5G→-2, U6G → -2) in the extended zone scheme. a→1. ħ→1. 
m →1. K = G→2. There are energy gaps with 2|UG|. 2|U2G|, 2|U3G|, 2|U4G|, 2|U5G| 
2|U6G|, of at the Brillouin zone (k = /a).  

 
5.4 Energy dispersion curves in different scheme zones 

The above results on the energy dispersion relation are summarized as follows. Three 
different zone schemes are useful. (a) The extended zone scheme where different bands 
are drawn in different zones in wavevector space. (b) The reduced zone scheme where all 
bands are drawn in the first Brillouin zone. (c) The periodic zone scheme where every 
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band is drawn in every zone. The formation of energy bands and gaps are generated. The 
main effects are at the zone boundary of the Brillouin zone. 
 

-3/a -2/a -/a 0 /a 2/a 3/a

k


k


k


k

Extended zone 
scheme

Reduced zone 
scheme

Periodic zone 
scheme

2|U
G
|

2|U
2G

|

 
Fig. Three zone schemes for the 1D system. Extended zone scheme. Reduced zone 

scheme. Periodic zone scheme.  
 
5.5 Bragg reflection at the boundary of the Brillouin zone 

The Bragg reflection occurs when the degeneracy condition E(k) = E(k-G) or |k-G| = 
|k|. This condition is equivalent to the condition 2k·G = G2. For the 1D system the Bragg 
reflection occurs when k = ±G/2 = ± /a, or at the zone boundary of the first Brillouin 
zone. For the 2D system, the boundaries form lines in the reciprocal lattice plane. The 
degeneracy condition |k-G| = |k| geometrically means that k lies on the perpendicular 
bisector of the reciprocal lattice vector G. For the 3D system, the Bragg reflection occurs 
when k is located at the zone boundary surfaces of the first Brillouin zone. 
 
5.5.1 1D system: 

For For the 1D system this condition at the zone boundary at k = G/2 = ±/a.  
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Fig. Condition of the Bragg reflection for the 1D case. |k| = |k - G|. G = 2/a. k’ = k – 

G. 
 
5.5.2 Ewald's sphere 

The electron behaves like x-ray as a wave inside the crystal. It undergoes a Bragg 
reflection when the wavelength is  = 2/k at k = /a (the boundary of the Brillouin zone). 
When the electron has the wavevector k, it also has the wavevector k' = k + G. Then the 
standing wave can occurs when these two waves with ak /  are superimposed. The 
resulting wave does not propagate inside the crystal. In other words, the group velocity at 

ak /  is equal to zero. 
We consider the Bragg reflection using the Ewald sphere. k and k' are the 

wavevectors of the incident and outgoing electrons. The origin of the reciprocal lattice 
plane is located at the end of the wavevector k (the point A). In this Fig. the green lines 
show the Bragg planes at G = 0 (the point A) and G = -2/a (the point B). Since the 
lattice is one-dimensional, the reciprocal lattice form a plane at kx = 2n/a. The Bragg 
reflection can occur only at 
 

a
kk xx

2
'  

 
in this figure. 
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O

G G=2 p

a


k k = p
a

k' k'= p
a


Origin of RL

AB

 
 
From this we can define the Brillouine zone for the one dimensional case as follows. 
 

k=G2
G=2paO

k k'

 
 
Fig. The first Brillouin zone. |k|</a. The Bragg condition (k - k' = G) is satisfied only 

at k = =/a. The blue line are the boundary of the first Brillouin zone.  
 

k=G2
G=-2pa O

kk'

 
 
Fig. The first Brillouin zone. |k|</a. The Bragg condition (k - k' = G) is satisfied only 

at k = -/a. The blue line are the boundary of the first Brillouin zone.  
 
5.5.3 2D system: 

The Bragg reflection occurs when k is on the zone boundary of the first Brillouin 
zone. G·(k-G/2) = 0. In other words, G is perpendicular to k-G/2. This implies that k is at 
the zone boundary of the first Brillouin zone for the Bragg reflection. 
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Fig. Condition of the Bragg reflection for the 2D case. |k| = |k – G|. 

6 Kronig Penny model as an application of the Bloch theorem 
6.1 Secular equation 

Here we consider a Kronig-Penny model. Using this model we can get an exact 
solution for the Schrödinger equation of an electron in a periodic potential. The potential 
is defined by 
 

U(x)=U0 for –b≤x≤0 and U(x)= 0 for 0≤x≤a (the periodicity, a+b). 
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Fig. Square-well periodic potential where a = b = 1 and U0 = 1. 
 

We now consider a Schrödinger equation, 
 

)()()()(
2 2

22

xExxUx
dx

d

m
 


, 

 
where  is the energy eigenvalue. 
 
(i) U(x) = 0 for 0≤x≤a 
 

iKxiKx BeAex )(1 , )(/)(1
iKxiKx BeAeiKdxxd  , 

 
with mKE 2/22 . 
 
(ii) U(x) = U0 for -b≤x≤0 
 

QxQx DeCex )(2 , )(/)(2
QxQx DeCeQdxxd  , 

 
with 
 

mQEU 2/22
0  . 

 
The Bloch theorem can be applied to the wave function 
 

)()( )( xebax baik   , 
 
where k is the wave number. The constants A, B, C, and D are chosen so that  and d/dx 
are continuous at x = 0 and x = a. 
(a) At x = 0, 
 

DCBA  , 
 

)()( DCQBAiK  . 
 
(b) At x = a, 
 

)()( )( bea baik    ,  or )()( 2
)(

1 bea baik    , 
 

)(')(' )( bea baik    , or )(')(' 2
)(

1 bea baik    , 
 
or 
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)()( QbQbbaikiKaiKa DeCeeBeAe   , 
 

)()( )( QbQbbaikiKaiKa DeCeQeBeAeiK   . 
 
The above four equations for A, B, C, and D have a solution only if det[M]=0, where the 
matrix M is given by 
 































)()(

)()(

1111

baikQbbaikQbiKaiKa

baikQbbaikQbiKaiKa

QeQeiKeiKe

eeee

QQiKiK
M . 

 
The condition of det[M] = 0 leads to 
 

)sinh()sin(
2

)(
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The energy dispersion relation (E vs k) can be derived from this equation. 
 
6.2 Energy dispersion relation 
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Fig. Plot of energy E vs wave number k in the Kronig-Penny model (periodic zone 

scheme). a = 2, b = 0.022. K .  100Q . 0≤≤30. mU /50 2
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