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Sir Rudolf Ernst Peierls, CBE (June 5, 1907, Berlin – September 19, 1995, Oxford) was a 
German-born British physicist. Rudolf Peierls had a major role in Britain's nuclear program, 
but he also had a role in many modern sciences. His impact on physics can probably be best 
described by his obituary in Physics Today: "Rudolph Peierls...a major player in the drama of 
the eruption of nuclear physics into world affairs. 
 

 
 
http://en.wikipedia.org/wiki/Rudolf_Peierls 
 
((John Bardeen (1941))) 

Many ideas of CDWs were developed in early attemmpts to explain superconductivity. In 
1941, John Bardeen suggested that "in the superconducting state there is a small periodic 
distortion of the lattice" that produces energy gaps, and that these gaps would lead to 
enhanced diamagnetism. Bardeen abandoned this idea when he realized the difficulty of 
obtaining an appropriate arrangement of gaps on the three-dimensional Fermi surfaces of 
common superconductors. 
 
((J. Bardeen,  Phys. Rev. 59, 928 (1941))) 
Proceedings of the American Physical Society, Minutes of Washington DC, Meeting 
May 1-3, 1941. 

The energy discontinuities produced by the zone structure yield a decrease in the energy 
of the electrons at the expense of the increase in energy of the lattice resulting from the 
distortion. A rough estimate of the interaction between the electrons and the lattice obtained 
from the electrical conductivity in the normal state indicates that the superconducting state 
may be stable at low temperatures. The most favorable metals are those which have a high 
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density of valence electrons in a wide energy band and which have a large interaction 
between electrons and lattice (low conductivity). 
 
___________________________________________________________________________ 
1. One-dimensional energy band 
(1) Regular lattice 

Suppose that the system consists of N atoms, forming a linear chain along the x direction. 
They are periodically arranged such that the distance between the nearest neighbor atoms is a. 
The size of the system is L = Na.  
 

 
 
Fig. One dimensional chain of atoms where the nearest neighbor distance is a. 
 

The energy gap appears at the Brillouin zone boundary )(
a

k


 . The energy gap is fixed at 

this reciprocal lattice point. In this case there are 2N states for the first Brillouin zone 

)(
a

k


 . The factor 2 comes from the spin of electrons. When each atom has two electrons, 

there are 2N electrons in the system. Then the band is filled up to the Brillouin zone 
(insulator). When each atom has one electrons, there are N electrons in the system. Then the 
band is half-filled in the energy band (metal).  
 

 
Fig. Energy band for the system where there are two electrons per atom. All states are 

occupied up to the zone of the Brillouin zone (insulator) 
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Fig. Energy band for the system with one electron per atom. All states are occupied for 

|k|<kF (= /a) in the Brillouin zone (metal) 
 
(ii) Effect of lattice distortion  

We still assume that there is one electron per atom in the linear chain. Now let us displace 

every second atom by a small distance .  
 

 
 
Fig. Lattice constant changes from a to 2a due the lattice distortion. 
 
This reduces the symmetry to that of a chain with spacing 2a, and the potential acquires a 

Fourier component of wave number /a which in this case is equal to 2kF. This results in an 

energy gap at k = kF = /2a, in accordance with the change in the periodicity from a to 2a. In 
this case, all states raised by the change are empty, and all states lowered are occupied, so the 
system becomes insulator.  
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Fig. Energy band for the system with one electron per atom, after the lattice distortion. 

The energy gap appears at k=kF = ±/2a. The system changes from metal to insulator 
(Peierls instability). 

 
((Peierls, More surprise in theoretical physics, 1991)) 

This instability came to me as a complete surprise when I was tidying material for my 
book (Peierls 1955), and it took me a considerable time to convince myself that the argument 
was sound. It seemed of only academic significance, however, since there are no strictly one-
dimensional systems in nature (and if there were, they would become disordered at any finite 
temperature. I therefore did not think it worth publishing the argument, beyond a brief 
remark in the book, which did not even mention the logarithmic behavior. 

It must also be remembered that the argument relies on the adiabatic approximation, in 
which the atomic nuclei are assumed fixed. If their zero-point motion were taken into 
account, the answer might change, but this would be a difficult problem to deal with, since it 
involves a strongly nonlinear many-body problem. 
 
2. Elastic energy due to the lattice distortion 

Then change of the total energy of the system consists of 

(i) the change of energy in electrons (Eelectronic<0) which decreases because of the 
appearance of energy gap. 

(ii) the change of energy associated with the lattice distortion (Eelastic>0) 
 

The total energy E is given by 
 

latticeelectronic EEE  . 

k
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If E <0, the lattice distortion occurs. This is predicted by Peierls for an ideal one 
dimensional conductor. 

The charge density wave has a periodic function of x with the periodicity . We consider 
the elastic strain 
 

)2cos()cos( xkQx F  , 
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Note that kF is a general value and is not always equal to /2a. The spatial-average elastic 
energy per unit length is 
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where C is the force constant of the linear metal. We next calculate Eelectronic. Suppose that the 
ion contribution to the lattice potential seen by a conduction electron is proportional to the 
deformation, 
 

iQxiQx
F eVeVxkVxU  000 )2cos(2)(  

 

where  AVUQ  0  (see Kittel, ISSP, p.422- 423). 

 
3. Bragg diffraction; Ewald sphere 
(a) Typical Bragg reflections: 
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Fig. Ewald sphere: kkq  ' ; k'=k. The Bragg reflection occurs when q = G. q is the 

scattering vector and G is the reciprocal lattice vector  
 
(b) The case for the charge density waves; 
 

 
 
Fig. Ewald sphere: kkq  ' ; k'=k. The Bragg reflection occurs when q = Q. q is the 

scattering vector and Q is equal to 2kF.  
 
Experimentally the Bragg reflection appear at 
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where 
a

a
2*   is the reciprocal lattice and a is the lattice constant in the absence of the 

lattice distortion. The Bragg intensity is proportional the square of the order parameter 
(energy gap). Note that 
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If this ratio is a rational number (= p/q; p and q are integers).  
 

q

p
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. 

 
There are q CDW waves in the p lattice distances. This is called the commensurate CDW.  
If this ratio is irrational, this is called the incommensurate CDW. 
 
4. Calculation of the change of energy near the regions at k = kF 
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Now we consider the simplest case: mixing of only the two states: k  and Gk   (k≈kF), 

k - G ≈ - kF, G = 2kF). The wavefunction is approximated by 
 

GkCkC Gkk   . 

 
where only the coefficients Ck and Ck-G are dominant. The central equation (eigenvalue 
problems) is 
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From the condition that the determinant is equal to 0, we have 
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Note that the potential energy U(x) is described by 
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where we assume that UG is real: 
 

 0
* VUUU GGG   . 

 
Then we have 
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We retain the minus sign to get minimum energy. The reduction of the lower energy is 
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To get the reduction of the total energy per unit length, we have to integrate from -kF to kF, 

multiplied by (1/2), The main contribution comes from the neighborhood of k = kF. We 
assume that V0 is constant. Using the relation 
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The approximations are valid only in the neighborhood of k = kF. So we need to restrict the 
integration to a maximum value of k, k0, such that 
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where the factor 2 comes from the spin degree of the electron. 
 

01 kkF   

 
5. Calculation of change of energy in the regions near k = -kF. 

Here we show that the contribution from the regions near k = -kF is the same as that from 
the regions near k = kF as shown in the above. give equal contributions  
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We consider the case when k ≈-kF (<0), k+G = kF with FkG 2 . Since 
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Noting that 
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where the factor 2 comes from the spin degree of the electron. 
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So it is found that 
 

)1()2(
electronicelectronic EE   

 
6. The change in the total energy due to the lattice distortion 

The total energy is given by 
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The important feature of this result is that it behaves for small V0 as  
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For small displacement, V0 is proportional to the displacement . 
 

AV 0 , 

 
where A is constant (see Kittel, ISSP, p.422- 423). The behaviors of the reduction in 
electronic energy for small displacement is  
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This is interesting because there may be other effects favoring the regular spacing,  = 0, 

such as the repulsion between the atomic cores, but these will have an energy varying 2. 
Thus the electronic energy must dominate for small displacement. This suggests that the 
periodic chain must always be unstable. 
 
The change in the total energy E  is given by 
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In order to find the minimum value of E, we take a derivative of E with respect to . 
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Then we get 
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This expression is almost the same as that derived by Kittel, 
 

)
4

exp(
2

2

222

mA

Ck

m

k
A FF 

    (Kittel, ISSP) 

 



16 
 

7. Electronic density )(x  

 
 
At finite temperatures, there is a finite probability that a part of electrons is excited from the 

lower state ( )(
k )to the higher state ( )(

k ). 

 
We consider the state given by 
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The charge density at x is given by 
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The electron density can be rewritten as 
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Suppose that QU  is real. Thus we have 
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We define (Q, T) as 
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The Fourier component of )(x  is given by 
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We note that the potential energy is given by 
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8. Calculation of )0,( TQ  

We now calculate the susceptibility 
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At T = 0 K, 1)( kf   for k<kF and 0 for k>kF. 
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where we take into account of the degree of spin (the factor 2). We make a plot of the 
function defined by 
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The susceptibility is found to diverge at Q = 2kF.  
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9. The density of state at the Fermi energy for the 1D system 
 

Q

cQ,T=0c0

2kFkFO



24 
 

 
 

Fig. Peierls instability. Electrons with wave number k near k = kF have their energy 
lowered by a lattice deformation. When the length of the system is L, the allowed 

value of k is k = l (2/L), where l is 0, ±1, ±2,.... In this figure (T = 0 K), the states in 
the lower energy band is fully  occupied, while the states in the upper energy band are 
empty.  

 

The lattice distortion with wavelength  gives rise to an energy gap at 
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where the factor 2 comes from the spin degree, and N is the total number of electrons in the 
system (L). Note that N is not the number of unit cell in this case. The number density n is 
defined by 
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This means that here are two electrons per wavelength .  
 

 
 

The density of states is defined by 
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where we take into account of (i) the spin factor (2) and (ii) the even function of k for the 
energy dispersion. The energy dispersion of the free electron is 
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Using the relation 
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we have the density of states as 
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The density of states at the Fermi energy is 
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10. The relation 
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What is the temperature dependence of the susceptibility? 
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Then we have 
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k0 is the lower limit of k (which was discussed above). The magnitude of 0 is not essential in 
our discussion. 
 
11. The critical temperature Tc 
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The energy gap is equal to zero at T = Tc. The critical temperature Tc is derived from the 
energy gap equation. The derivation of Tc is almost the same as that derived for the BCS 
model of the superconductivity.  We start with the energy gap equation with zero energy gap, 
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where  = 0.577216 is the Euler's constant. Then we get 
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12. The energy difference at finite temperatures 
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The total energy of both electron and lattice is given by 
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where AVUQ  0 . When Q → 2kF and T →0, ),( TQ  shows a logarithmic divergence. 

Therefore, below a characteristic temperature Tp, E becomes negative, leading to the Peierls 

instability. Using the expression for ),2( TkF , 
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where 0 is a dimensionless electron-lattice interaction parameter, 
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13. Kohn anomaly 

At temperature which is sufficiently higher than the Peierls transition temperature, the 

angular frequency (k = 2 kF) of the phonon dispersion curve drastically decreases, showing 
the softening of the phonon mode. This behavior is called the Kohn anomaly. This behavior 
can be explained qualitatively as follows. The electrons are influenced through the potential 
UQ. due to the lattice distortion. The electronic charge is newly generated in the form of 
 

QQ UTQ ),(  . 
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The force exerted on the phonon is weakened by the electron-phonon interaction. This leads 
to the decrease in the restoring force of the lattice distortion. The angular frequency of 
phonon at Q becomes softening and is reduced to zero at the critical temperature. In summary, 
the lattice wave with Q gives rise to the electric potential with Q, which works for the electric 

charge Q, turns back to the lattice wave with Q as a positive feedback. This leads to the 
restoring force of the lattice. 

We discuss the time dependence of the displacement Q of the phonon mode with Q and 

Q . Noting that 
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where vQ is the strength of the electron-phonon interaction, and AUQ   in thermal 

equilibrium. Then we have the characteristic angular frequency 
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which is obtained in the previous section. 
 

 
 
Fig. Schematic diagram of acoustic phonon dispersion relation of a one dimensional metal 

at various temperatures above Tc. 

Q

WQ

2kF

T>Tc

T=Tc



34 
 

 
 
14. Order parameter 

The Peierls instability occurs in a one-dimensional metal. This instability gives rise to the 
combination of the electronic density wave and lattice wave with the same wave number 2kF. 
This combined waves are called the charge density wave (CDW). The appearance of the 
CDW state can be experimentally found by x-ray and neutron scattering.  

In the CDW state, the order parameter is the energy gap. This gap is equal to zero at T = 
Tc and increases with decreasing temperature. We consider the temperature dependence of 
the energy gap below the critical temperature. We start with  
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14. Calculation of order parameter 
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From this we get the expression for  as, 
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((Mathematical note)) 
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In the vicinity of T = Tc (but T<Tc), we have a good approximation, 
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16. Critical behavior of the order parameter (energy gap) 

The energy gap is obtained as 
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The energy gap at T = 0 K can be evaluated from the energy gap equation at T = 0 
K 
 

]
2

ln[

]ln[

1

0

0

0

2
0

2
00

0
2

0
2

0

0










 











d

 
 
or 
 

)
1

exp(2
0

00 
  . 

 
Together with the relation 
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we get the universal relation 

 

52774.3
13387.1

42 0 


cBTk
. 

 
The energy gap is the order parameter. Since this order parameter continuously changes with 
T and reduces to zero. The phase transition is of the second order with the critical exponent  
= 1/2. 
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Fig. Plot of the energy gap /0 as a function of a reduced temperature t = T/Tc. 
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APPENDIX Typical quasi-one dimensional metal 
1. TTF-TCNQ 
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The tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) is not a simple metal. 
Above 58 K, there is an energy gap at g  = 0.14 eV and an extremely narrow conductivity 

mode centered at zero frequency. Near 53 K, TTF-TCNQ undergoes a metal-insulator 
transition to a high-dielectric constant semiconductor in which the oscillator strength is 
shifted from zero frequency and pinned in the far infrared. In an earlier work. 
 

 
 
2. Blue bronze K0.3MoO3 

The quasi-one-dimensional (1D) conductor K0.3MoO3 undergoes a Peierls transition at T 
=183 K. Using cold-neutron scattering, Pouget have succeeded in resolving in frequency and 
for wave vectors parallel to the chain direction the pre-transitional dynamics and the 
collective excitations of the phase and of the amplitude of the charge-density-wave (CDW) 
modulation below T. The pre-transitional dynamics consists of the softening of a Kohn 
anomaly at the wave vector 2kF together with the critical growth of a central peak in the 
vicinity of T, . In addition we observed just above T, the beginning of a decoupling between 
the fluctuations of the phase and of the amplitude of the CDW.  
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