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Ferromagentic order
A ferromagnet has a spontaneous magnetic moment --- a magnetic moment even in zero
applied magnetic field.

Curie point and the exchange integral
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Consider a paramagnet with a concentration N ions of spin S.
We treat the exchange field as equivalent to a magnetic field He. (Hg ~ 10° T)

He =AM (mean field theory)

where M is the magnetization defined as the magnetic moment per unit volume (emu/cc).
The Curie temperature T is the temperature above which the spontaneous magnetization
vanishes.
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For T>T,

M=y,(H+Hp)
where y, = = is the paramagnetic susceptibility and C is the Curie constant.

cC cC
T-CA T-0

7= % = Curie-Weiss law,

where ® = CA is the Curie-Weiss temperature.



What is the background?

The exchange field gives an approximate representation of the quantum-mechanical
exchange interaction.

E,=-2J).S,'S;,

i<j

where the sum is over nearest neighbor pairs. J is the exchange integral and is related to
the overlap of the charge distribution of spins i,j. This equation is called the Heisenberg
model.
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where H(i) is the exchange field seen by i-th electron.
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Magnetization
M=-guN <S>

The exchange field is
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M =AM, (A>0),

which means that
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The Curie-Weiss temperature
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The mean field theory result is
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Temperature dependence of the saturation magnetization
We use the complete Brillouin expression for the magnetization
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M =NgugSBs(x) = y =SBs (X)),

where Bg(X) is the Brillouin function defined by
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Property of Brillouin function
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lim SB (X) = S

In the molecular field theory we find that T, = ©.

As T increases the magnetization decreases smoothly to zero at T.. This behavior
classifies the usual ferromagnetic/paramagnetic transition as a second order transition.
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For sufficiently large X

By (X) = 25 +1 coth 25 +1 X —Lcoth X
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cothz =& ¢ _lve ~1+2e7” for 7 « 1.
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Then Bg(X) is approximated by

28+, X
Bs(X)=(282;1j[1+2e [25 j}%{nze %SJ

2 25+1X 71 71
:1+(2S+1je (25 }—le S=1+e S (ZSHJe‘X—l ;
S S S S

zl—le_g
S
y = M —SB,(X)=S—e S.
Ng g



We defined the magnetization deviation

AM =M (0)— M(T)

= NgugS - NQ/IB[S —e_s}

X

= Ngluse_g
X:M(AM):M 222J NGz, S = 22) 52
kg T KgT guN kgT
Then
22JS
AM ~ N -
Qg exp[ KT }
or

AM 3 T,
~expl ————|.
Ng, S+1T
The experimental results show a much more rapid dependence of AM on T at low

temperatures.
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= AT?"? spin wave

((Note))
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typical example
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deviation of yu from the molecular field theory
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=B,,,(X) = tanh Xx.

Note that
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When S=1/2,
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y = tanh X
y=tx

T =t.
TC
solution
tanh X =tx =y or tanh(Ty] =y

T.and @ (real system)
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T.« ® for real systems
((Example)) Ni: T,=627.2 Kand @= 650 K
((Note))

T./@=1 in the molecular field theory

T./@<1 for 3D systems

T/ @ monotonically decreases with increasing dimensionality.
T/O <0.1 for 1D system

Critical exponent gand y(critical behavior)
Molecular field theory approximation (T, = ©);
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y and M can be described by
M~(Te-T) forT<T,H=0
y~([T-T)” forT>T,
C~(T-T)% M~H"(T=T)
where
a+2p+y=2.
2D Ising system (Onsager exact solution)
a=0,=1/8=0.125, y=7/4=1.75

Saturation Magnetization at absolute zero
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M, = M(0)(emu/cc) = NQuzS = ng Nz
N is the number of spins per unit volume.

Ng =0S

Do not confuse ng with the paramagnetic effective magneton P, = g4/S(S+1).
Observed values of ng are often nonintegral.

Ne
Fe 2.22
Co 1.72
Ni 0.606
Gd 7.63
Dy 10.2
EuO 6.8

There are many possible causes
(1) spin-orbit interaction which adds a subtracts some orbital magnetic moment.
(2) Another cause in ferromagnetic metals is the conduction electron magnetization

induced locally about a paramagnetic ion core.
3) spin arrangement in a ferrimagnet

24,

A band or itinerant electron model accounts for the ferromagnetism of Fe, Ni, and Co.

S =average spin

Cu: (3d)'°(4s)’ Cu is not ferromagnetic
Ni: (3d)’(4s)’ Ni has the possibility of a hole in the 3d band

Schematic relationship of 4s and 3d bands in metallic Cu
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e Cu has one valence electron outside the filled 3d shell.
e The net spin of the d-band (net magnetization) is zero.

Band relationships in Ni above T,
The net magnetization is zero

paramagnetic phase
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Schematic relationships in Ni at 0 K

ferromagnetic phase
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3dt and 3d| sub-bands are separated by an exchange interaction.
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