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Ferromagentic order 
A ferromagnet has a spontaneous magnetic moment --- a magnetic moment even in zero 
applied magnetic field. 
 
Curie point and the exchange integral 
 

 
Consider a paramagnet with a concentration N ions of spin S. 
We treat the exchange field as equivalent to a magnetic field HE. (HE ~ 103 T) 
 

HE = AM (mean field theory) 
 
where M is the magnetization defined as the magnetic moment per unit volume (emu/cc).  
The Curie temperature Tc is the temperature above which the spontaneous magnetization 
vanishes. 
 

 
 
For T > Tc 
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p   is the paramagnetic susceptibility and C is the Curie constant. 
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where CA  is the Curie-Weiss temperature. 
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What is the background? 
 
The exchange field gives an approximate representation of the quantum-mechanical 
exchange interaction.  
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where the sum is over nearest neighbor pairs. J is the exchange integral and is related to 
the overlap of the charge distribution of spins i,j. This equation is called the Heisenberg 
model.  
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where H(i) is the exchange field seen by i-th electron. 
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Magnetization 
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The exchange field is 
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which means that 
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The Curie-Weiss temperature  
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The mean field theory result is 
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Temperature dependence of the saturation magnetization 
We use the complete Brillouin expression for the magnetization 
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where )(xBS  is the Brillouin function defined by 
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Property of Brillouin function 
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In the molecular field theory we find that cT . 

 
As T increases the magnetization decreases smoothly to zero at Tc. This behavior 
classifies the usual ferromagnetic/paramagnetic transition as a second order transition. 
 

 
 
For sufficiently large x 
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Then )(xBS  is approximated by 
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We defined the magnetization deviation 
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Then 
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The experimental results show a much more rapid dependence of M on T at low 
temperatures. 
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((Note)) 
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typical example 
 

 = 23.5 K for CoCl2 GIC 
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 J = 23.5/3 = 7.8 K 

 

 
 
Because of spin flustration  
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deviation of M from the molecular field theory 
 
((S = ½ case)) 
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For S = ½ 
 



7 
 

Tk

HgS
x

B

B , xxB
SgN

M
y

BA

tanh)(2/1 


. 
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In general 
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When S=1/2, 
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Tc and  (real system) 
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Tc «    for real systems 
 
((Example)) Ni: Tc = 627.2 K and   650 K 
 
((Note)) 
 

Tc/ =1 in the molecular field theory 
Tc/ <1 for 3D systems 
Tc/ monotonically decreases with increasing dimensionality. 
Tc/ ≤ 0.1 for 1D system 

 
Critical exponent  and  (critical behavior) 
Molecular field theory approximation (Tc = ); 
 

 = ½ 
 = 1 

 
 and M can be described by 
 

M ~ (Tc - T) for T < Tc, H = 0 
 

 ~ (T - Tc)
- for T > Tc 

 
C ~ (T - Tc)

-, M ~ H1/ (T = Tc) 
 
where 
 

 + 2 +  = 2. 
 
2D Ising system (Onsager exact solution) 
 

  0,  = 1/8 = 0.125,  = 7/4 = 1.75 
 
Saturation Magnetization at absolute zero 
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N is the number of spins per unit volume. 
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Do not confuse nB with the paramagnetic effective magneton )1(  SSgPeff . 

Observed values of nB are often nonintegral. 
 

  nB 
 Fe 2.22 
 Co 1.72 
 Ni 0.606 
 Gd 7.63 
 Dy 10.2 
 EuO 6.8 

 
There are many possible causes 
 
(1) spin-orbit interaction which adds a subtracts some orbital magnetic moment. 
(2) Another cause in ferromagnetic metals is the conduction electron magnetization 

induced locally about a paramagnetic ion core. 
(3) spin arrangement in a ferrimagnet 
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A band or itinerant electron model accounts for the ferromagnetism of Fe, Ni, and Co. 
 

Cu: (3d)10(4s)1  Cu is not ferromagnetic 
Ni: (3d)9(4s)1  Ni has the possibility of a hole in the 3d band 

 
Schematic relationship of 4s and 3d bands in metallic Cu 



10 
 

 
 Cu has one valence electron outside the filled 3d shell. 
 The net spin of the d-band (net magnetization) is zero. 

 
Band relationships in Ni above Tc 
The net magnetization is zero 
 

 
 
Schematic relationships in Ni at 0 K 
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3d↑ and 3d↓ sub-bands are separated by an exchange interaction. 
 
 


