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1. Relativistic dynamics (R.P. Feynman)
We start with the work-energy theorem given by

AE =W =F-.dr

or
A_E:Fg or d_EzF
At dt dt

where F is the force and is given by
d
F=—[m(u)u
OIt[ (u)u]

According to Einstein, E is described by
E =m(u)c®
Then we get

Ane]_y. S muy

dt
or
dmw) _ o d
m(u)c v =m(u)u dt[m(u)u]
or
cd

2 _li 2
5 g lMWI =5 Im(uul

This differential equation can be solved as
[m(u)c]® =[m(u)u]® +C

where C is a constant. When u = 0, we have



m(u =0)2c?=C
or

[m(u))*(c® —u?) =m(u = 0)*c?
Then we have
m(0)

u
1-—
c

m(u) =

The energy and momentum are obtained as

2
E =m(u)c’ = m(O)cz : p=m(V)u= _m(O)uz
u u

or
EZ
c_2 = [m(o)]zc2 + pz

For simplicity we use m(0) = my.

2. The derivation of E:

E =dex =I%(mu)udt :jud(mu)

m,Uu

2
u

1_2
C

:J'ud(

)

u2
:moju(l—c—z)’3/2du

m,c?
u

1-=
c

Inthe limit u - 0,



1 3 _u
E=myc®+=mu’ +=my— +...
2 8 "¢

Note that
2 1 2
K=E- mOC = E mOU

The relativistic kinetic energy is defined as

K = E —m,c® = m,c*( = -1.
V2
e
3. Energy vs momentum relation
? 2.2 2
po m, ¢ +p
@ When p =0,
E—mc
c
Point B:
E/c = mgC and p=0.
Point A:
(p, E/c)

The green straight line: the energy dispersion of the light

—=p
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Momentum and energy conservation

p1+p2=0

Pot =

E(p)+E(p,)

Etot = E(Ptot)

E/c
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Addition of velocity in the Minkowski spacetime diagram

4.
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Fig.3

Y
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The derivation of the formula for adding velocities. The path OB corresponds to

the velocity (x'/ct' = u'/c) in the S' frame. tand = v .

(@)S. = (X'cos@ +ct'sin @, x'sin @ + ct'cos 6) ,

Then the velocity in the S frame is obtained as

k(x'cosé + ct'sin 9) F+ctan0
Ug=u=c =

k(ct'cosd + x'sin@)

where K is the scaling factor.

u'+cv
c _ u'+v
X' - v u'v
c+tand c+u'— 1+
t c o



How about the velocity u' in the S' frame when the velocity u in the S frame is given? Solving
the above equation with respect to a variable u’, we have

U = U'— u-—v
. =
C
((Note))

The inverse transformation can be done without specific evaluation, by exchanging the
primed and unprimed quantities and by reversing the sign of v wherever it occurs. This is often a
labor-saving devices.

5. Example-1
The particle moves with a velocity of v = ¢/2, and the particle emits a proton forward with u'
=¢/2 in the S' frame. What velocity does the proton move in the rest frame (S frame)?

Light (c)

Fig.4 Adding velocities in the space-time diagram. The vector OD is the vector u'
(=ax'lAct’ = 1/2) in the S' frame. In the S frame, this vector is described by u
(=A4x/Act = 4/5).

The velocity of the proton is 4c/5, since the coordinate of the point D is x = 4 units and ct = 5
units.



In the S' frame, the motion of the proton is described by

M _cl2 1
Alct) ¢ 2

The blue straight line passing through the point D corresponds to the motion of the proton. The
velocity of the point D in the S frame is given by

AX 4

Act) 5

In other word, the proton moves with the velocity of 4c/5 in the S frame.

@ When u' = v =c/2, we get

4
Ug = ZEC

(b) When u'=c,

u+v  Cc+v
s =W T o
I+— 1+
c C

6. Example-2

Two particles (A and B) are moving in opposite directions as observed from a system S; at
ua = 0.9c and ug =-0.9c. What is the velocity of the particle B with respect to the particle A (S'
frame)? Note that the S' frame is the frame where the particle A is at rest; v = ua= 0.9c.



A
<« B A o——>
ug=-0.9c ua=0.9c
> X
O
Fig.5 Two particles (A, B) moving with velocity ua (= 0.9 c) and the velocity ug (=-0.9

c) in the S frame.
Forug=-09candv=ua=0.9c,

. Ug —-0.9c-0.9c 1.8¢c
Ug'= = =

-V
1 UV 1409° 181
CZ

So the relative to the particle A, the particle B travels in the (-x") direction with speed 1.8 ¢/1.81.
((Example))

Three galaxies are aligned along an axis in order A, B, C. An observer in galaxy B is in
the middle and observes that galaxies A and C are moving in opposite directions away from
him, both with speeds 0.52c. What are the speeds of galaxies B and C as observed by
someone in galaxy A?

In the K system;

ux*=-0.52¢, Ux' =0, U =0.52¢

In the K' system

utM=—2—"—=0 or  v=u’=-052c
V. A
1- 2y,
c
B
u’° —v
uS’'=— =—v=0.52c
V B
1-—u,
c



¢, uf-v  052c-(-052c) 1.04c

b = o T (C0520) T 14027
1-~u’ 17052 ~ Y

C C

=0.8189c

((Note))
Without mistake, you may calculate the velocity of A, B, and C with respect to the observer at A.
(i) First calculate the relative velocity without taking into account of the special relativity.

For A; ua-ua
ForB;ug-ua=ug-V
ForC:uc-ua=uc-V

(i) Next we use the formula: v = ua = -0.52c.

Uy —V _

1 =0
1+ ?uA(—v)

Ys =V —052¢
1+ ?uB (-v)
_ U=V 8189
1+ ?uc(—v)

7. Addition law of velocity derived from the Lorentz transformation
X'=y(x —vt) X, =y (% +vt')
X,'= X, X, =X,

Xg'= X X3 = X'
trt-Lx) e lx)

Suppose that an object has velocity components as measured in S’ and S.



Uty

lI:%: ul_v ul_ =

t 1—fu1 at 1+’ful'

a1, U Cdx, 10y
2 P 2= . T T g
dt 71—ful dt 71+fu1'

Lot 1, B

Sodt B odt B
Y1-y, Y14 20,

c c

The conservation of momentum and mass of a moving object

8.
b s-frame S primed-frame
1 u2 H3 “H3
. . . . Before collision
mq m2 m3 m3
. —
b S -frame S primed-frame
v
—_— Rest
.. .0 After collision
mq{ +m2 m3 m3
Fig.6 Momentum conservation before and after collision. The S and S' frame.

The example is the inelastic collision of two balls of equal mass in the S' frame. They roll
together with velocities g3 and -z in this system and stick together. We describe this collision in

the S and S' frames. The momentum conservation is

Mytty + My(—45) =0 in the S' frame

M,z + My, = (M, +m,)v in the S frame

where the S' frame moves along the positive x direction at the velocity v. The velocities ¢4 and g

in the S frame are
10



_ MtV _ T MtV
MV HeV
1+=- 1-=-
C c
From the momentum conservation law, we get

H

H

my (14 —V) =m,(V - 11,)

or
HV
1+ 7=~
m _ V=4, _ c’
m, -V 4 MV
CZ
since
I (R R CRy AR
2 ’
¢ ca-*9)
and
) [ CRR  CRA[CR
= :
c 21+ 44y
C
we get

2 2
o} H
ml\/l_c_z = mz\/l_c_zz =m,

when the ball is at rest, its mass is mg. The mass in motion must be

m(u) =

where u is the velocity of the system.

((Mathematica))
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u2?
eqg2 = 1——2 /- eql // Factor
C

(C-V) (c+V) (C-u3) (C+u3)
(027Vu3)2

ul?

eq3 = 1——2 /- eql // Factor
C

(c-v) (c+V) (c-u3) (C+u3)

(02+vu3)2

eqg2
seql = /—qs /1 Simplify[#, {cz+vu3>0, c2—vu3>0}] &
€q

c2+vu3

cz—vu3

9. Lorentz transformation for E and p
u is the velocity in the S frame, while u' is the velocity in the S' frame.

. u-v
uv
e
2 1
El_ mOC pl: mou
u|2 ! 12
1- 1-
c? c?
Noting that
2 2
u v
u.z \/(1_2)(1_2)
1— _ C C
c’ 1w ’
CZ
we get

12



E': mOC = =

12 2 2 2

R

c c c c

or

E_p!
E'_ ¢ "¢
c 2
L
c

which we recognize as being exactly of the same form as

Y
ct——X
ct'= CZ .
Y
1-—
CZ
Similarly,
uv, u-—v
mo(l—cg)l v
. mu' 2
p= U2 - e V2
1-—; 1-—,1-—
c c c
v

or

which we recognize as being exactly of the same form as

13



Thus the transformations for the new energy (E'/c) and momentum (p') in terms of the old energy
(E/c) and momentum (p) are exactly the same as the transformation for ct' in terms of x and ct,
and x' in terms of x and ct.

10. Four dimensional vector

Here we use the proper time dz, measured in the moving frame with a velocity u (the velocity
of the particle)

2
drzwfl—l;—zdt.

In this frame the particle is at rest.

D= mu  m %—m%
u2 uz dt Od’[

1—0—2 l—C—2
E: MyC :mocﬁzmom

dr

In other words, the four momentum is defined by

dx;

p| OdT

In other words, the four momentum is defined by
dx. .E
=m,—=(p,1—
Py =My~ (P C)

Thus p; is the four dimensional vector just lime x;, since the proper time is relativistically
invariant.

X, = (r,ict)

The co-ordinate vector

14



P

P,
p =

Ps

P,

Under a Lorentz transformation, we have
P, =2a,np,
a,a, = 5%

Then we have

ply p‘” = ayv pvayﬂ pﬂ = a’/tva/t/l pv pﬂ = 5;12 pv pﬂ, = py py

We note that

2 2.2 2.2 2.2 2

) m,’u?  my’c m,’c u 2 2
PP, =P =% = z - 2=~ 7(1-—)=-mc
c u u u C
1-—5 1-— 1-—
C c C

In other words, we have

P, P,=p,p,=——mc’

p,p, isinvariant and it must have the same value in every frame.

10. Zero rest mass
A case of special interest arises when the rest mass mq is zero.

EZ
?_pz :m02C4 :O

or
E=cp

The interesting point is that the theory of relativity implies that a particle of zero rest mass have a
nonzero energy and momentum. If its velocity is u, the energy and momentum are

15



. myu E_ mgc
p= 2’ c 2’
u u
1-— 1-—
c c

if u/c is fixed at a value less than unity, E and p approaches zero as my approaches zero. But if
we let u/c approach unity, while mg approaches zero, in such a way that

Therefore, a body can have nonzero energy and momentum , even thou its rest mass is zero, if
and only if it is moving at the speed of light (u = ¢) [Bohm].

11. Doppler effect

y
I
S frame
Light
K
Vv
o
Light source
- X
Fig.7 Derivation of the Doppler effect

The light source moves at the velocity v along the x axis. The light is emitted from the light
source. The angle between the direction of the light and the x axis is a. We assume that the
angular frequency for the observer in the S frame ia w and that the angular frequency for the

light source in the S' frame is @' = ayp. Then we get the relation

16



E_, Vv
E_¢ "¢
c 2

L

c

where E =hw, E'=ho'=ho,,and p, =nhkcosa .

ho vV o v
he o T lkcosa—  ———hwocosa—;
0 _c c__¢ c
c v2 v2
C C
or
w(l——cosa)
w'= -
v
-
c
or
2 2
v
1-— 1-—
C C
D=0 — =@,
l1-—cosa 1-—cosa
c

12. Doppler effect (Minkowski spacetime diagram)

17
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Doppler effect-1

Fig.9

We consider a moving light source that flashes with frequency fo. The observer at rest in the
S frame receives the light signal with a different frequency f (this is called the Doppler effect of

light). First we calculate the distances in the S' frame;

18



(OC),. = (OB + BC),, = (OA),.cosd + (E)S.tan%

1+ -

o<

=ct'cos@ +ct'sin@ =ct'

<
(S

1+~
CZ

Using the scaling factor

The frequency of the light observed at the S frame is related to that of the light emitted in the S'
frame is

with

13. Doppler effect-11

19
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Fig.10 Doppler effect-11

We suppose that a source is located at the origin of the reference frame S, and that an
observer moves relative to the frame S at the velocity v, so that the observer is at rest in the
frame S'. Each emitted pulse travels with speed c. Suppose a first pulse is sent out at t = 0 when
the observer is at the position x = Xo, and suppose the (n+1)-th pulse is sent out at t = nz. This
will have covered n periods of vibration, so that the measured frequency of the source in S is

V=—.
T

In the above figure, we assume that

tanezx.

(0B),. = (OA) cos, (AB), = (EB), = (OA) sine

Then we have

20



Then we have

or

The wave lengths in the S and S' are defined by
A=cr, and A'=ct'

Then the ratio of the wavelength is given by

(red shift)

14.  Twin paradox

There are twin: Mary (the Moving twin) and Frank (the Fixed twin). We imagine that each
person sends equally spaced time signals of their own proper times to the other, The cumulative
counts of time signals for the whole trip are then compared. Suppose that each person is
transmitting f pulses per unit time. As Mary travels away from Frank, each observer will receive
the other's signal at the reduced rate

21



But for how long? Here is the asymmetry. As soon as Mary reverses, she begins to receive
signals from Frank at the enhanced rate

frof |1HA

1-5

With Frank it is quite different. The last signal sent by Mary before she reverses does not reach
Frank until a time L/c later. Thus for much more than one-half the total time Frank is recording
the Mary's signals at the lower rate f'. Only in the latter stages does Frank receive pulses at the
higher rate f".

Note that each observer receives as many signals as the other sends between start and finish
of trip. Frank is able to infer from his observations that it took place at the midmoment of the
journey time as measured by Mary, since equal numbers of signal received by Frank at the two
different rates f' and " (French).

22
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(CA) =L, (OC)s =vT

In the S' frame,

L . L L cT'X
(OA),. =cT", [CA) = (CE)s = (CF) =cT'sing=—C
Vv
1+C—2

2

o o o7y 1+V—2 cT'—
L=(CA), =k(CA)q = ——C-V__C
Vv

or

The time (in the S frame) of detecting one of twin arrives at the turnaround: T¢

24




T, = (OF ), =k(OF). = kI(OF ), + (CF)]

2

v v
T cTE 1+C2
:( 2 + 2) 2
\Y \Y \Y
\/1+c2 \/1+c2 \/1_(:2
cT'L+ )
_ c
2
v
C

ST+ Yy =T +cT =L+
C \'
or
Te =£+£.
Vv C

The time Tg in the S frame:

((Note))

In the above figure, we assume that

(O_A)S =nr'
(&)S. = (ﬁ)s cosé, (E)S = (E)S = (ﬁ)s = (ﬁ)s.sin 0

Then we have

k(0A), (coso —sin o)
V2
1/1+C—2
VZ
=

(GE), - k(GE),

1-

e

=Nt

< [Ool<

N ‘ N

(@]



Similarly we have

(ﬁ)s = (E)S =Nng'——-=

v
P O R
noa|Y 1=V
c c
APPENDIX

From Panofski-Philips (Classical Electricity and Magnetism)
Suppose that px = 0 in the S frame;

E

where

and

26



Before After

u
Q
® —® —_—
Mo M1
Energy conservation
E +Q=M,?, or E =-Q+M,’

Momentum conservation

_p1+9:0’
C

o |O

or P =
we use the relation given by

2
E’ - pc? =(-Q+M,c?)? -c? (3—2 Mc* =M, *c*

We define the energy difference between the initial and final atoms, taken at rest,
AE=M,*-M,c’

Then we get an equation for Q as
—(AE)? + 2¢*M,(—-Q + AE) =0.

leading to

AE
2M c?

Q=AE(L-— )

((Example))

For heavy atom, the recoil is a small effect.
We consider ***Hg (Mo = 198 a.m.u .= 3.28 x 10 kg), which emits photons with an energy Q =
412 keV = 6.601 x 10™* J. We calculate

AE
2Mc

=1.12x 10

7=

27



This is small, but not really negligible in our quantum world.

B
C mpC
T/C
) p A
OA=p, AB=BC =mg,
OB=E/c OC=Tlc
2 2_ 2. 4
Epemie B
E:moc+—, E=mc*+T
c
u_cp
c E

@ Find the mass of a proton in MeV. (myc?)
(b) Proton has a relativistic kinetic energy of T =2.00 GeV. Find the energy, momentum, and
speed of proton

28



Clear["Global +"];

Physconst = {me - 9.1093821545x 10™%', u » 1.660538782x 107,
eV - 1.602176487 x 107, ge » 1.602176487 x 10719,
C - 2.99792458 x 108, Mp » 1.672621637 x 107%,
h - 6.62606896 x 10™*, 7 - 1.05457162853 x 10~
GeV - 10° 1.602176487 x 107°, MeV - 10° 1.602176487 x 107} ;

rulel = {T » 2000 };

Mp c2

fl = / - Physconst
MeV

938.272

El=(f1+T) /. rulel
2938.27

pl = E1% - f12

o lp

2784 .44
C

cpl _ _
— // Simplify
El

0.947644
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