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1. Lorentz transformation 
 
1.1 Derivation of Lorentz transformation 
 

 
 
We consider a Galilean transformation given by 
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We know that the velocity of light remains unchanged under a transformation (so-called 
the Lorentz transformation) satisfying the principle of relativity. This implies that the 
Lorentz transformation is not the same as the Galilean transformation. 
 
Here we assume that 
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from the symmetry of transformation 
 
What is the value of ? 



2 
 

 
(i) The light is emitted at 
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(initially). The speed of light (in vacuum) is the same in all internal reference frames; it 
always has the value c. 
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((Mathematica)) 

Derivation of Lorentz transformation 
 eq1=x== (x'+v t');eq2=x'==  (x- v t) 
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in the limit of  →0. 
 
For convenience, we introduce 
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or in the matrix form, 
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Note that Taa 1  

 ')()( 1 xaaax T    

 
1.2 Lorentz contraction 

Imagine a stick moving to the right at the velocity v. Its rest length (that is, its length 
measured in S’) is '1x . 

We measure the distance of the stick under the condition that 04 x . Since  
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The length of the stick measure in S (x1) is shorter than that observed in S’ (x1, proper 
length) 
 
1.3 Time dilation 

We are watching one moving clock moving to the right at the velocity v. 
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The time in S (t) is longer than that observed in S’ (t0, proper time). The moving 
clocks run slow 
 
1.4 Proper time 
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We define the proper time as 
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where  is a proper time. 
 
1.5 Notation of four vector 

Four vector notation 
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b ( = 1, 2, 3, and 4) 

 
where 
 

b1, b2, b3:  real 
b4 = ib0  purely imaginary 

 
((Note)) 

We use the Einstein convention, in which repeated indices are summed. 
 

i, j, k (= 1 – 3) 
, ,  (= 1, - 4) 

 
The co-ordinate vector 
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b ( = 1, 2, 3, and 4) 

 
Under a Lorentz transformation, we have 
 

 xax ' 
 
instead of  
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Note that 
 

Taa 1   (transpose matrix) 
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A four vector, by definition, transforms in the same way as x  under the Lorentz 

transformation. 
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The scalar product cb   is defined by 
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It is invariant under the Lorentz transformation 
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1.6 Four dimensional Laplacian operator 
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is invariant under the Lorentz transformation: Lorentz scalar 
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1.7 A tensor of second rank 

A tensor of second rank, t , transforms as 

 

 taat '  

 
1.8 A tensor of third rank 

A tensor of third rank, t , transforms as 

 

 taaat '  

 
((Note)) 
We make no distinction between a covariant and contravariant vector. We do not define 
the metric tensor g . 

 
2. Velocity, acceleration, and force 
2.1 Lorentz velocity transformation 
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Suppose that an object has velocity components as measured in S’ and S. 
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The Lorentz transformation of a velocity less than c never leads to a velocity greater than 
c. The relations reduce to the Galilean transformation for v<<c.  

Suppose that the particle is s photon, and u1 = c in the frame S. Then we have 
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whereas the Galilean transformation would have given 
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2.2 Lorentz acceleration transformation 
 
Similarly we have the acceleration components as measured in S’ and S. 
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The acceleration is a quantity of limited and questionable value in special relativity. Not 
only is it not an invariant, but the expressions for it are in general cumbersome, and 
moreover its different components transform in different ways. 
 
2.3 Force F under the Lorentz transformation 
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We consider one special case when the particle is instantaneously at rest in S. So that 
u = 0. 
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The component of F parallel to the motion of S’ is unchanged, whereas the components 
perpendicular are divided by . 
 
3. Charge and current density 
3.1 Charge density 

 
 
We measure the distance of the cylinder under the condition that 04 x . Since  
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but with the same area A (since dimension transverse to the motion are unchangeable. If 
we call '  (= 0) the density of charges in the S’ frame in which charges momentarily at 
rest, the total charge Q is the same in any system, 
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3.2 Current density J  

The current density J  is defined as 
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where u is the velocity of the particle in the S frame. Evidently the charge density and 
current density go together to make a 4 vector. 
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3.3 Invariance under the Lorentz transformation 
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Suppose that J’ = 0 (or u’ = 0) in the S’ frame, where the point charge is at rest. 
vu  J  (the frame S’ moves at the velocity v relative to the frame S). Then we have 
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4 Maxwell’s equation field fensor 
4.1 Four vectors for the vector potential and scalar potential 
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4.2. Gauge transformation 
 

)
1

,(  c
iAA   

 
 AA' , 

 

t
 ' , 

 
  AA'  

 
((Note)) 
 

4
44 '

)(

1
'

1

x
AA

ictc
i

c
i












 

 
Lorentz gauge: 
 

0
1

)( 2













tcc
i

ict
A

x

A 




 AA  

 
4.3 Electromagnetic field tensor F 

We define the field tensor as 
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This equation holds automatically for the antisymmetric tensor  
 
The magnetic field; 
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The electric field; 
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The field tensor is an anti-symmetric tensor of second rank and hence, has 6 independent 
components. 
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4.4 Maxwell’s equation (1) 

The Maxwell's equation is given by 
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4.5 Invariants of the field 

 FF  is invariant under the Lorentz transformation 
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A further invariant is obtained by contraction of the field tensor with the “completely 
anti-symmetric unit tensor of fourth rank” defined by 
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0 if two indices are equal, 
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1 if )(  is an even permutation of (1234), and 
-1 if )(  is an odd permutation of (1234). 

 
(Levi-Civita tensor) 

 
One may be convinced easily that   is a tensor of rank 4 because 
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4.7 Maxwell's equation using dual tensor 

Using the electromagnetic tensor 
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4.8 Summary 

The Maxwell's equation can be expressed by 
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6. E and B under the Lorentz transformation 
 
6.1 Transformation 

 FaaF '  

 

  FFFaaaaFaaaaFaa '  

 
or 
 

 ')()(')()(' 11 FaaFaaFaaF TT   

 
____________________________________________________________ 

)('

)('

'

233

322

11

BcEE

BcEE

EE








  

33

22

11

)('

)('

'

BvE

BvE









E

E

EE

 

 
 

)('

)('

'

233

322

11

E
c

BB

E
c

BB

BB











  

33

222

11

)
1

('

)
1

('

'

EvB

EvB







c
B

c
B

BB



  



23 
 

____________________________________________________________ 

)''(

)''(

'

233

322

11

BcEE

BcEE

EE








  

33

22

11

)''(

)''(

'

BvE

BvE









E

E

EE

 

 
 

)''(

)''(

'

233

322

11

E
c

BB

E
c

BB

BB











  

323

222

11

)'
1

'(

)'
1

'(

'

EvB

EvB







c
B

c
B

BB



  

 
6.2 Choice of the frame S’ which has pure electric or pure magnetic fields 

From the Sec.3.5, we find that 

(1) 2
2

2 1
EB

c
 = invariant under the Lorentz transformation 

(2) BE   = invariant under the Lorentz transformation 
 

Here we assume that BE  =0 and 0
1 2

2
2  EB

c
  

 
Then one can find a frame S’ in which (E’ = 0 and B’ ≠ 0) [pure magnetic field], or (B’ = 
0 and E’ ≠ 0) [pure electric field]. The proof is given in the following. 
 
(a) Pure magnetic field (E’ = 0) 

We assume that E’ = 0. From the Lorentz transformation, we have 
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The condition BE  =0 is satisfied since  
 

03232332211  BvBBvBBEBEBEBE  

 

The condition 0'
11 2

2
2'2

2
2  EBEB

cc
 can be rewritten as  

 

0'
1 22

2
2  BEB

c
 

 
This implies that one can find the frame where 0'2 B  and E’ = 0. 
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((Note)) 
From the relation 
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we get 
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(b) Pure electric field (B’ = 0) 

Next we assume that B’ = 0. Then we have 
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The condition BE  =0 is satisfied since  
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This implies that one can find the frame where 0'2 E  and B’ = 0. 
 
((Note)) 
From the relation 
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we get 
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7. Energy-momentum tensor and Maxwell’s stress 
7.1 force density 

We define the vector of the force density as f  
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7.2 Maxwell’s equation 

The Maxwell’s equation is given by 
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The left-hand side can be split into two terms, 
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The second term: 
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Here we use the Jacobi identity; 
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The force density is rewritten as 
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with the symmetric energy-momentum tensor (Maxwell’s stress tensor) 
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7.3 Conservation law 
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The Maxwell’s stress tensor is given by 
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Explicitly, the elements of T are 
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8. Lorentz force 
8.1 Origin of the Lorentz force 

Consider a particle of charge q moving with velocity v (along the x axis) with respect 
to the reference frame S in a region with electric and magnetic fields E and B. 
 
In the frame S, the Lorentz force on this charge is given by 
 

))(),(,()( 23321 vBEqvBEqqEq  BvEF  

 
In the frame S’, the Lorentz force is given by 
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where q is a relativistic invariant and is at rest. 
 
The fields in S and S’ are related by 
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What is the relation between F and F’? 
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8.2 force density and charge density 
 

)( BJEf    
 
We choose the frame S’ in which the system with the charge density is at rest. 
We now calculate the force density vector  
 

''' Ef   
 
when 0'J  (the system is at rest). 
 
We note the Lorentz transformation of 4-dimensional vector, current density and charge 
density 
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The Lorentz transformation of E and B,  
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In the frame S, the Lorentz force is given by 
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9. Lienard-Wiechert potential 
9.1 Lienard-Wiechert potential 

We now consider the Lienard-Wiechert potential 
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In the S’frame: 
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The scalar potential  is given by 
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Similarly we have for the vector potential 
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The electric field E and the magnetic field B are given by 
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For a slow moving charge (v<<c), we can take for E the Coulomb field. Then w have 
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((Mathematica-10)) 

Lienard-Wiechert potential 
 <<Calculus`VectorAnalysis` 
 SetCoordinates[Cartesian[x,y,z]] 
 Cartesian[x,y,z] 

 R
xvt212 y2 z2  

 
          t v x2 y2 z2 1 2  

 


q
4  0


1
R  

 

q

4
          t vx2  y2 z2 1 2 0  

 
A1

qv0
4 

1
R  

 

q v0

4
            t vx2  y2 z2 1 2  

 A={A1,0,0} 

 
 q v0

4
           t vx2  y2 z2 1 2

, 0, 0
 

 B1=Curl[A]//FullSimplify 

 

0,
q v z1 2 0

4 t v x2 y2 z2 1 232 ,


q v y12 0

4 t v x2 y2 z2 1 232   
Electric field in the frame S 

 E1 Grad  DA, t . 0 10c2  FullSimplify 

 

 qc2 v2 t v x
4 c2  t v x2 y2 z2 1 2320

,


q y12

4 t v x2 y2 z2 1 2320
,


q z12

4 t v x2 y2 z2 1 2320

 

 V1={v,0,0} 
 {v,0,0} 

 
eq1

1
c2

CrossV1, E1 Simplify
 

 

0,
q v z1 2

4 c2  t v x2 y2 z2 1 2320
,


q v y1 2

4 c2 t v x2 y2 z2 1 232 0


 

 
eq1 B1 .0

1
c20

  Simplify
 

 {0,0,0} 
 

 
9.2 Distribution of the electric field 
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3*

2
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)1(
4 R

q pR
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where 
 

))(1()( 2222* zyvtxR    

 

)1,1,( 22* zyvtx  R  

 
),,( zyvtxp R  

 
Rp is the relative coordinate of the field point and the charge point. The electric field is 
along the position vector Rp. Rp is a vector from the instantaneous location of the charge 
in S to the point where E is measured in S. 
 
((Mathematica-11)) 
The electric field of a charge moving with the constant speed with v ( = v/c) on the unit 
circle of the real space 
 

Lienard-Wiechert problem; field for a uniformly moving charge 
<<Graphics`PlotField` 

 

E1X_, _:
x12


x2 12y23

.x Cos, y Sin Simplify

 

 

E1Y_, _:
y12


x2 12y23

.x Cos, y Sin Simplify

 
 E1X[,] 

 

1 2 Cos
Cos2 1 2 Sin232  

 E1Y[,] 

 

1 2 Sin
Cos2 1 2 Sin232  

 
s1[_]:=Table[{{E1X[,],E1Y[,]},{E1X[,],E1Y[,]}
},{,0,2 ,/32}] 
 
s2[_]:=ListPlotVectorField[ Evaluate[s1[]]//N//Chop,C
olorFunctionHue, 
AspectRatioAutomatic,ScaleFactor1,FrameTrue,PlotPoi
nts20,AxesOrigin{0,0},DeFaultColorHue[0.6],DisplayF
unctionIdentity] 

 

General ::spell1  : Possible spelling error : new symbol

name "DeFaultColor " is similar to existing symbol "DefaultColor ". More…  
b = 0, 0.04, 0.08, 0.12, 0.16 
b = 0.20, 0.24, 0.28, 0.32, 0.36 
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ps1=Evaluate[Table[s2[],{,0,0.36,0.04}]];Show[Graphic
sArray[Partition[ps1,5]],DisplayFunction$DisplayFunct
ion] 
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 GraphicsArray 
b = 0.4, 0.42, 0.44, 0.46, 0.48 
b = 0.50, 0.52, 0.54, 0.56, 0.58 
 
ps2=Evaluate[Table[s2[],{,0.4,0.58,0.02}]];Show[Graph
icsArray[Partition[ps2,5]],DisplayFunction$DisplayFun
ction] 
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 GraphicsArray 
b=0.6, 0.62, 0.64, 0.66, 0.68 
b = 0.70, 0.72, 0.74, 0.76, 0.78 
 
ps3=Evaluate[Table[s2[],{,0.6,0.78,0.02}]];Show[Graph
icsArray[Partition[ps3,5]],DisplayFunction$DisplayFun
ction] 
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 GraphicsArray 
b = 0.80, 0.91, 0.82, 0.83, 0.84, 
b = 0.85, 0.86, 0.87, 0.88, 0.89 
 
ps4=Evaluate[Table[s2[],{,0.8,0.89,0.01}]];Show[Graph
icsArray[Partition[ps4,5]],DisplayFunction$DisplayFun
ction] 
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 GraphicsArray 
b=0.9, 0.91, 0.92, 0.93, 0.94 
b=0.95, 0.96, 0.97, 0.98, 0.99 
 
ps5=Evaluate[Table[s2[],{,0.9,0.99,0.01}]];Show[Graph
icsArray[Partition[ps5,5]],DisplayFunction$DisplayFun
ction] 
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10. Relativity of Electric field and magnetic field  
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E = 0 and B ≠ 0 

We consider the charge q moving along the x axis in the presence of the magnetic 
field B (the frame S). In the frame S, there is only an external magnetic field B. Thus the 
magnetic force on the charge is given by 
 

)( BvF  q  
 
Suppose that there is no electric field (E = 0) in the frame S ( )0B . The E’ and B’ in the 
frame S’ are related to those in the frame S as 
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or 
 

')(' BvBvE    (1) 
 
 
Then the force (electric force) on the charge q in the frame S’ is  
 

)('' BvEF  qq  
 
since the charge q is the same for any frame and the particle is at rest in the frame S’. 
There is no force due to B’ since the particle is at rest in the frame S’. 'F  is the force of 
F’ in a direction perpendicular to the velocity v. Thus we have  
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11. Derivation of the Biot Savart law 
 
B’= 0 and E’≠ 0. 

We consider that the magnetic field B’=0 in the frame S’. In the frame S’, there is 
only an external electric field E’ (the point charge is at rest). The E and B in the frame S 
are related to those in the frame S’ as 
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Using the result from the Lienard-Wiechert potential (<<1) (see Sec.8) 
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which is the application of the Biot-Savart law to a point charge. 
 
12. Ampere’s law (Feynman 13-9) 

We consider that the electrons located on the linear chain (the line density –0) moves 
at the velocity v. At the same time there are positive ions located on the same chain (the 
line density 0). We now consider the frame S’ which moves at the velocity v. 
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((Formula)) 
 

'   
 
where   for the frame where the particle moves at the velocity v along the x axis, and '  
for the frame where the particle is at rest. 
 
We assume that 
(1) The line densities of electrons and positive ions are given by 0  and 0  in the 

frame S. 
(2) The line densities of electrons and positive ions are given by   and   in the 

frame S’ 
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The net line charge density in the frame S’ is 
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((Note)) 

This relation can be also derived from the Lorentz transformation of the 4-
dimensional current density 
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A is the same for the S and S’, since the plane of A is perpendicular to v. 
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where vAJI )( 011   and  = 0. 

So the positive line density produces an electric field E’. We use the Gauss’s law. 
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The electric field E’ at the distance s from the axis of the cylinder, 
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where s is the radius of the Gaussian surface (cylinder). 
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So there is an electrical force on q in S’; 
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q
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But if there is a force on the test charge q in S’, there must be one in S. In fact, one can 
calculate it by using the transformation rules for forces. Since q is at rest S’ and F  is 
perpendicular to the x axis. Then we have 
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)( 00  is a magnetic field due to the line current density 0v  (Ampere’s 

law). The force has a form as qvBF  . 
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13. Derivation of the Ampere’s law from relativity 

We analyze the fields and currents as viewed from two frames. S where the ions are at 
rest. S’ where the electrons are, on the average, at rest. 
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Multiplying the cross-sectional area (A) of the wires, we obtain the following 
transformation for currents and linear charge densities. 
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where  A , the subscript 1 is neglected and the plus and minus subscript refer to the 
ions and the electrons, respectively.  
 
In S’ we know that 0'I  since the electrons are at rest. 
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In S the net charge per unit length must vanish. 
 

'0     
 
or 
 


 

 '  



46 
 

 
The fields in S’ due to '  are 
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noting that 'ˆˆ rr   (perpendicular to the x axis), we find that the fields in S are 
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Then the total fields in the frame S are 
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Since )''(    vII  and 0'I , we have 
 

'  vI  
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We see that a magnetic field due to current flow is a relativistic effect. 
 
14. Capacitance moving along the x axis with a uniform velocity 
14.1 The capacitance moves along the x direction which is parallel to the electric 

field of the capacitance. 
 

 
 
In the frame S’ where the charges are at rest. 
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14.2 The capacitance moves along the x direction which is perpendicular to the 

electric field of the capacitance. 
 

 
 
In the frame S’ where the charges are at rest. 
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15. Relativistic-covariant Lagrangian formalism 
15.1 Lagrangian L (simple case) 
 
Proper time 
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We define the proper time as 
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where  is a proper time and u is the velocity of the particle in the frame S. 
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Nonrelativistic case 
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In the classical mechanics, 
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((Note)) 
This momentum coincides with the components of four-vector momentum p  defined by 
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15.2 Hamiltonian 

The Hamiltonian H is defined by 
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15.3 Lagrangian form in the presence of an electromagnetic field 

The action function for a charge in an electromagnetic field 
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where the second term is invariant under the Lorentz transformation. 
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The integrand in the Lagrangian function of a charge (q) in the electromagnetic field, 
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The Hamiltonian H is given by 
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15.4 Expression for the Lagrangian in terms of 4-dimensional velocity 

Here we use d instead of dt in the expression of Lagrangian. 
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  is a four-dimensional velocity defined by 
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15.5 Lagrangian and Hamiltonian in terms of the field tensor F 
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This is invariant under the Lorentz transformation. 
 
We may try the Lagrangian density 
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The Hamiltonian density Hem for the free Maxwell field can be evaluated as follows. 
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where E  vanishes sufficiently rapidly at infinity. 
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16. Relativistic form of Newton’s law 
16.1 Relativistic force 

We define the force F and the kinetic energy T as 
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where C is a constant of integration. Since the kinetic energy may be taken as zero for u = 
0. 
 
16.2 Relativistic energy 

Then we have C = =mc2. 
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It is convenient to introduce a quantity E defined by 
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E is the energy of a free particle 
 
17. Four-dimensional momentum 
17.1. Definition 
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Here we define the four-dimensional momentum 
 

),())(,)(,)(,)(()( 321 c

E
iimcumumum

dt

dx
mx

d

d
mp puuuuu  




 

 
This is exactly the same as the expressions of p obtained from the Lagrangian. 
 

2

2

2
2

1

)(

c

mc
mcE

u
u



   

 
17.2 Lorentz transformation 

This momentum is clearly a four-vector since dx  is a Lorentz four-vector and m and 

d are Lorentz scalar. In fact, under the Lorentz transformation 
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18. Four-dimensional velocity (or proper 4-velocity) 
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Here we define the four-dimensional velocity by 
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21. Force 
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22. Minkowski force 

We define the Minkowski force as 
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This is a 4-dimesional vector. The spatial components of K are related to the ordinary 
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23 Lorentz force in the relativistic mechanics 
23.1 
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holds in an arbitrary frame S. This expression is the correct relativistic form for Newton’s 
second law. The momentum form is more fundamental. 

The four-dimensional momentum is given by 
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The final form of the equation of motion is given by 
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24. Cyclotron motion: a particle in a uniform magnetic field along the z axis. 

We now consider the case of E = 0. 
 

0kinE
dt

d
 

 

Thus we have 
2

2

2

1

1
)(

mc

E

c

kin




v

v  = constant 

The momentum: 
 

2c

Ekinv
p   

 
The equation of motion 
 

)(
2

Bvv  q
E

c

dt

d

kin

 

 
or 
 



61 
 

0

2

2







z

x
kin

y

y
kin

x

v

v
E

qBc
v

v
E

qBc
v







 

 
We use the complex plane for the solution. 
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This equation describes a cyclotron motion (circular motion with radius R). 
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25. The motion of the particle under an electric field ( E ) 
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We now consider the capacitance consisting of two parallel planes. Suppose that the 
particle with charge q on the one plate moves to the other plate. The initial velocity is 
equal to zero. What is the velocity of the particle arriving at the other plate? 
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26. Equation of motion under a constant electric field 

We assume that E is along the y axis. The initial momentum p0 is in the (x, y) plane. 
The particle is at the origin at t = 0. 
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Solving these differential equations (we use the Mathematica), 
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Thus in a uniform electric field, a charge q moves along a catenary curve. 
 
 ((Mathematica-13)) 

Zimmerman  
2D motion of a relativistic particle in a uniform 
electric field 
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 eq2=Solve[eq1,]//Simplify 
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eq31

2

c2
. eq22  Simplify

 

 
        c2 m2

c2 m2 px02 E02q2 t2  
 V={x'[t],y'[t],z'[t]} 
 xt, yt, zt 
 eq4=eq3 Y1 
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eq6=DSolve[{eq5,{x[0]0,y[0]0,z[0]0}},{x[t],y[t],z[t
]},t]//Simplify 
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 rule1={m1,q1,E00.1,px00.1,c1} 
 {m1,q1,E00.1,px00.1,c1} 
 x[t_]=x[t]/.eq6[[1,1]]/.rule1//Simplify 
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 y[t_]=y[t]/.eq6[[1,2]]/.rule1//Simplify 
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 z[t_]=z[t]/.eq6[[1,3]]/.rule1//Simplify 
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 pl1=Plot[{x[t],y[t]},{t,0,30},PlotStyleTable[Hue[0.5 
i],{i,0,1}], PrologAbsoluteThickness[2], 
PlotPoints50,BackgroundGrayLevel[0.7]] 
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Nonrelativistic motion 
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28. A particle in a uniform electric field and a magnetic field 
Let the electric field E be parallel to the y axis and the magnetic field B parallel to the 

z axis. At t = 0 the particle is at the point (0,0,0) and has a momentum p0. 
 
Lorentz invariant: 
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According to the Lorentz invariance, we have 
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This is a condition for E and B. Using the Lorentz transformation, we have 
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We choose 0'3 B  
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The frame S’ move relative to the frame S with a velocity v along the x axis. We know the 
equation of motion for the particle in a uniform electric field 'E  along the y axis. 
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The required equations of motion for the particle in the frame S is obtained using the 
Lorentz transformation. 
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We assume a frame S’ that 0'E . 
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This is a condition for E and B. Using the Lorentz transformation, we have 
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We choose 0'2 E  
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The frame S’ move relative to the frame S with a velocity v (=E2/B3<c) along the x axis. 
We know the equation of motion for the particle in a uniform electric field 'B  along the 
z’ axis. 
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with v =E2/B3<c. 
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The required equations of motion for the particle in the frame S is obtained using the 
Lorentz transformation. 
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19. Doppler shift and aberration 
19.1. 
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Substituting these parameters into the invariant form, we have 
 

0)'sin'sin(')'cos'cos(')cos'('   kkykk
c

kv
xkvckckt  

 
This should be satisfied for any t’, x’, and y’. 
 

'sin'sin

'cos')(cos

')cos(







kk

k
c

v
k

ckvck







 

 
19.2. Doppler shift 
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19.3  Derivation of the formula using Mathematica 
 
((Mathematica-14)) 
 

eq1=(k (x Cos[]+y Sin[])-  t -k1 (x1 Cos[1]+y1 
Sin[1])+ 1 t1)/.{c k,1c k1}//Simplify 
 -c k t+c k1 t1+k x Cos[]-k1 x1 Cos[1]+k y Sin[]-k1 
y1 Sin[1] 
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 eq2=eq1/.rule1//Simplify 
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Plot[Evaluate[Table[f1,{,0,0.99,0.05}]],{,0,90},PlotS
tyleTable[Hue[0.05 
i],{i,0,20}],PrologAbsoluteThickness[2],PlotRange{{0, 
90},{0,7}},BackgroundGrayLevel[0.7],AxesLabel{"","
'"}] 
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19.4. longitudinal Doppler shift 0  (red shift) 

We suppose that a source is located at the origin of the reference frame S. An 
observer moves relative to S at velocity v. So that he is at rest in S’. 
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If S’ moves toward S, rather than away from S, the signs in numerator and denominator 
of the radical would have been unterchanged. 
 
((The red shift)) Wikipedia 

The light from distant stars and more distant galaxies is not featureless, but has 
distinct spectral features characteristic of the atoms in the gases around the stars. When 
these spectra are examined, they are found to be shifted toward the red end of the 
spectrum. This shift is apparently a Doppler shift and indicates that essentially all of the 
galaxies are moving away from us. Using the results from the nearer ones, it becomes 
evident that the more distant galaxies are moving away from us faster. This is the kind of 
result one would expect for an expanding universe. 

The building up of methods for measuring distance to stars and galaxies led Hubble to 
the fact that the red shift (recession speed) is proportional to distance. If this 
proportionality (called Hubble's Law) holds true, it can be used as a distance measuring 
tool itself.  

The measured red shifts are usually stated in terms of a z parameter. The largest 
measured z values are associated with the quasars. 
 
 
((Mathematica-16)) 

Red shift: l'/l vs b = v/c 
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 Plot[eq1,{,0.4,0.99}, 
PlotStyle{Hue[0],Thickness[0.015]}, 
BackgroundGrayLevel[0.7],AxesLabel{"","'/"}] 
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z-parameter = (l'-l)/l=(l'/l)-1 
 z=eq1-1 
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19.5. Transverse Doppler shift (
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19.6. Aberration 
 
From these equations 
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For low velocity we can neglect  22 / cv  and higher-order terms. Setting  '  
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((Mathematica-17)) 

Aberration 
 eq1=Cos[+] 
 Cos[+] 
 Series[eq1,{,0,1}] 
 Cos Sin   O2

 
 eq11=Cos[]-Sin[]  
 Cos[]- Sin[] 
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  Cos
1  Cos  

 Series[eq2,{,0,1}] 
 Cos 1Cos2   O2

 
 eq22 Cos 1Cos2  
 Cos  1Cos2 
 eq3=eq11eq22 

 Cos  Sin  Cos   1 Cos2  
 eq31=Solve[eq3,]//Simplify 
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General ::spell1  : Possible spelling error : new
symbol name "eq31 " is similar to existing symbol "eq1 ". More…  

 {{ Sin[]}} 
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Appendix 
 
A-1 Capacitance 
The capacitor moves at the constant speed in the x direction. 
In the S’ system 
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From the Lorentz transformation, the electric field and the magnetic field in the S system 
are given by 
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Since E2 is expressed by  
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A-2 Faraday’s law 
 
1. A conducting rod moving through a uniform magnetic field 
 

We consider a metal rod (conductor) which moves at a constant velocity (v) in a 
direction perpendicular to its length. Pervading the space through which the rod moves 
there is a uniform magnetic field B (//z) constant in time. There is no electric field in the 
reference frame F. 

The rod contains charged particles that will move if a force is applied to them. Any 
charged that is carried along with the rod, such as the particle of charge q moves through 
the magnetic field B and thus experience a force.  
 

)( Bvf  q  
 
The direction of the force is dependent on the sign of the charge q.  

When the rod is moving at constant speed and things have settled to a steady state, the 
force f must be balanced, at every point inside the rod, by an equal and opposite force. 
This can only arise from an electric field in the rod. The electric field develops in the 
following way. The force f pushes negative charges toward one end of the rod, leaving 
the other end positively charges. This goes on until these separated charges themselves 
cause an electric field E such that, everywhere in the interior of the rod, 
 

0 fEq , 
 
Then the motion of charge relative to the rod ceases. This charge distribution causes an 
electric field outside the rod, as well as inside. Inside the rod, there has developed an 
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electric field BvE  , exerting a force qE which just balances the force 

)( Bvq .  
Let us observe the system from a frame F’ that moves with the rod. What is the 

magnetic field B’ and the electric field E’? Note that there is no electric field (E = 0) in 
the frame F ( )0B . The E’ and B’ in the frame F’ are related to those in the frame F as 
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or 
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where 1
/1

1
22





cv
  for v<<c. The magnetic field B’ (= B) is almost equal to B. 

The electric field E’ has only a component along the y’ axis (the same as y xis). The 
presence of the magnetic field B’ has no influence on the static charge distribution. 
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2. A loop moving through a nonuniform magnetic field 
 

 

 
 

F denotes the force which acts on a charge q that rides along with the loop. We 
evaluate the line integral of F, taken around the whole loop. On the two sides of the loop 
which lie parallel to the direction of motion, F is perpendicular to the path element ds. So 
there is no contribution to the line integral. Taking account of the contributions from the 
other two sides, each of length w, we have 
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From the definition, we get 
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The electromotive force V is related in a very simple way to the rate of change of 
magnetic flux through the loop. The magnetic flux through a loop is the surface integral 
of B over a surface which has the loop for its boundary. 
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We now consider the frame F’ attached to the loop.  
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From the Lorentz transformation of E and B, 
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we have 
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For observers in the frame S’, Ea’ and Eb’ are genuine electric field. It is not an 
electrostatic field. The integral of E’ around the loop, which is the electromotive force V, 
is given by 
 

)('' baba BBvwwvBwvBdV   sE  

 
which is the same as that obtained for the frame S. 
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