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1. Lorentz transformation

1.1 Derivation of Lorentz transformation

b
E
¥
®

We consider a Galilean transformation given by

X'=X—-vt

X = X'+vt'

t'=t

dx' dx dt dx
—_—=——V—=——YV
dt' dt’' dt' dt
u'=u-v

We know that the velocity of light remains unchanged under a transformation (so-called
the Lorentz transformation) satisfying the principle of relativity. This implies that the
Lorentz transformation is not the same as the Galilean transformation.

Here we assume that

X'= y(X—vt)
X = y(X'+vt")

from the symmetry of transformation

What is the value of »?



(1) The light is emitted at

t=t'=0
X=X'=0

(initially). The speed of light (in vacuum) is the same in all internal reference frames; it
always has the value c.

=C

((Mathematica))
Derivation of Lorentz transformation
egl=x==y (x'+v t');eqg2=x'== y (x- v t)
X = (-tV+X) v
eq3=So%ve[{eq1,eq2},{x',t'}]//Simplify//Flatten
X (— -
{t’a 7< v ) +ty, X 5 (-tv+X) )(}
X X I
e = =t /-eq3 // Simplity
V(—tV+X) y2
X+tVy2-xy2 t
eqS5=eqg4/.{x»c t}//Simplify
V (-C+V) v
Cc-Cy2+Vvy2
eg6=Solve[eq5, vl

<

X

iC iC

Yot Y > ——————

H \/i_EZi_i}z} { ANV }}
T'=t'/.eq3/.eq6[[2]]1//Simplify
i (CCt-vX)

cvV-c2\?Z
x'/.eq3

(-t v+x) Y
X'=x'/.eq3/.eq6[[2]]//Simplify
ic(-tV+X)

N

Then we have

X'=y(x—vt) = y(X - fct)
t=yt-£x
C

where



with

Note that yis expanded as

y:1+%2+£+0(ﬂ6)

8

in the limit of f—0.

For convenience, we introduce

X, =ict

or

Then we have

X,'= 7(X1 + iﬁX4)

X,'= 7(_iﬁxl +X,)
or

X' y 0

X' B 0 1

x'| | 0 0

X,' —ipgy 0
or

X'= ax

X = 7(X1'_i:3)(4')

Xy = 7(iﬂxl '+X4')

S = O O

>
[0

mx =

x<
e



or in the matrix form,

X, y 0 0 —igr\(x'
{0 10 0 X,'
x| 10 01 0 |x
X4 iy 0 0 e X,'
x=a'x'

Note that a™' =a'
_ -1 _ T _ [}
X/l - (a' ),uv - (a )yv - a'v,uxv
1.2 Lorentz contraction

Imagine a stick moving to the right at the velocity V. Its rest length (that is, its length
measured in S”) is AX;".

We measure the distance of the stick under the condition that Ax, =0. Since
AX,'= y(AX, +1PAX,) = yAX
or

Axlzlel'z 1- B2AX"=/1- B> AX,
v

The length of the stick measure in S (A4x;) is shorter than that observed in S’ (4X;, proper
length)

1.3 Time dilation
We are watching one moving clock moving to the right at the velocity v.

AX, = y(15AX,'+AX,")
with AX,'=0. Then we have
AX, = yAX,"> AX,".

or




The time in S (A4t) is longer than that observed in S’ (Aty, proper time). The moving
clocks run slow

1.4  Proper time
(dxy')z =a,a,dx,dx, =o,,dx,dx, = (dxy)z
We define the proper time as

(ds) = c?(dt)* — (dx,)* — (dx,)* — (dx,)* = c*(dt")* — (dx,")* — (dx,")* — (dx,")’

2 _ 2 Z_delz dxzz dx32=2 21 _ 2
(ds) =c(dty*{1 Sl + )+ =@’ - 5]
or

ds

dr =—=dt\1- g’
T . p

where 71is a proper time.

15 Notation of four vector
Four vector notation

bl 1
b — b2 — 2
by | | by
b,) \ib,

b, (u=1,2,3,and 4)

where
by, by, bs: real
by =iby purely imaginary
((Note))
We use the Einstein convention, in which repeated indices are summed.
i,J, k(=1-3)
H, Vaﬁ“(: 13-4)

The co-ordinate vector



X
X

X = X, _ X,
X3 X3
X, iX,

b. (u=1,2,3, and 4)

Under a Lorentz transformation, we have

instead of

_
X/l - Zaﬂvxv
Vv

where

a,a, = 51//1

(a_la)zv = (a_l),m a, = (aT ),1;1 a, =a,a, = 5Av
Note that

a'=a' (transpose matrix)
(1)

X, X, =a,X8,X, =2,8a,XX, =0,XX, =X,X,
(2)

X, =2a,X,

aﬂvxy': a,a, X, = 5V/IX/1 =X,
or

X, =a,x,' or X,=a,X,'

A four vector, by definition, transforms in the same way as X " under the Lorentz

transformation.



_— vV —
A T T
ox,'  OX,'ox, OX,
where
X, = aﬂvxﬂ'

The scalar product b-c is defined by
b-c= bﬂc Y
It is invariant under the Lorentz transformation

b'ﬂ c' —aﬂvbvayﬂb =a,a,a, b,=0,ab,=a-b

1.6 Four dimensional Laplacian operator

0 0 0’ o 0’ ol , 10
X X :82+ Tt st =Y "o
L 0K, OXT 0%~ OXyT OX, c” ot

is invariant under the Lorentz transformation: Lorentz scalar

0 o0 __ 9. 0 0 0 0 0 0 0 0 0

a,—a —a,a
ox,ox, ox, “ox, “Moax ox, o, ox, ox, 0x, X, X,

1.7 A tensor of second rank
A tensor of second rank, t , transforms as

> Ltuvo

1.8 A tensor of third rank

A tensor of third rank, t _,, transforms as

WUVA

,uv/l ,uo‘avp Ar opT

((Note))
We make no distinction between a covariant and contravariant vector. We do not define
the metric tensor g

uv:

2. Velocity, acceleration, and force
2.1 Lorentz velocity transformation



-1
X, = (a )W X',
So we have

@@ah, =a, =@,

X,"= (X, —vt) X, = y(X,'+vt")
Xz': X, X, = sz
X3': X; Xy = X3'
t=rt-2x)  t=peex

Suppose that an object has velocity components as measured in S’ and S.

dx, u —Vv dx u,'+v
uV:_l:—l u :—1: 1
1 ' 1 '
dt l—ﬁu1 dt 1+£u1'
c
AN T A S
2odt B 2odt [
71—y, Y14+ 20,
c c
u '— dX3':l U3 u :%:l u3'
3 ' 3
dt 71—£u1 dt 71+£u1'
c c

The Lorentz transformation of a velocity less than € never leads to a velocity greater than
c. The relations reduce to the Galilean transformation for v<<c.
Suppose that the particle is s photon, and u; = C in the frame S. Then we have

u-v

C—vV _Cc-V _

u,'= = = c
1Py 2P 12V
C C C
((Example))
9 9 9
u'=—=C = =
' 10 u,'+v 1OC+10C 180
u = 1 = 31 :181C<C
v:ic I+~u, 1+—
10 100

whereas the Galilean transformation would have given

9

U,

10 10

u1'+v=—c+—c=gc>c



2.2 Lorentz acceleration transformation

Similarly we have the acceleration components as measured in S’ and S.

Cdu, _dt'd | ou'tv 1 1 d{ u+v | _1(d-8%'_ 1 a'

1= =T an = ) - -3
dtdtdt) | Byl 7asBuny i Bur ] TadBuy 7 as Py
c c c c c
o P
g Gu_tdvd| w1 1 d| w |_1 a S
2T T T T am 2 a4 -2 Y
dt ydtat 1+fu1' r (Hful')dt 1+fu1' 4 (l+ful')2 4 (1+fu1')3

1 1 d u3| B 1 a3| 1 a] a3 C
3 - ' -2 qt' e
dt 14 dt dt 1+£U1' V4 (1+£U1') dt 1+£u1' Ve (1+£U1')3 Y (1+EUIV)3
c c c ¢ ¢

Qdu_tdvd| u

where

a_1_ 1
at 7ﬂ+fmj

The acceleration is a quantity of limited and questionable value in special relativity. Not
only is it not an invariant, but the expressions for it are in general cumbersome, and
moreover its different components transform in different ways.

2.3 Force F under the Lorentz transformation
Lorentz transformation

X'= y(X—vt)
y'=y
7'=12

, Vv
t'= ]/(—C—le +t)

or



X = y(X'+vt'")
y=y
z2=17

V 1 '
t:7(c_2X1+t)

B dp, BdE. dp, pBdE B dE
' dp, -~ dE 1 _rrmy S EE= F -
A SAT S L S
' Vv v dx, v dx, Vv
at FCpOad)  p-e) 1= -
Slnced—E:F
dt
p
_dpy P MR
T v
I—C—zu1
Similarly
dp,
= dp,’' _ dp, _ dt _ F,
20 dt v v dx Vv
7(—CTdX1+dt) 7(—*E+l) 7(1_C7U1)
dp;
(= dp3' _ dp3 _ dt _ F
g Vv v dx v
7(—C7dX1+dt) 7(_7E+1) 7(1_CTU1)

We consider one special case when the particle is instantaneously at rest in S. So that
u=20.

F'=F

fF
Y

foF
e

10



The component of F parallel to the motion of S’ is unchanged, whereas the components
perpendicular are divided by .

3. Charge and current density
3.1 Charge density

v

We measure the distance of the cylinder under the condition that Ax, = 0. Since
AX,"= y(AX, +15AX,) = yAX,

or
l [} 2 [}
AX, = —AX,'= /1= B AX
V4
we have
1 2
L=—L'=y1-4°L
Ve

but with the same area A (since dimension transverse to the motion are unchangeable. If
we call p' (= py) the density of charges in the S’ frame in which charges momentarily at
rest, the total charge Q is the same in any system,

Q=p'L'A=pL'A= pLA
or
poL'=plL

or

P =Py =7

11



3.2  Currentdensity J,
The current density J , is defined as

3, = (.icp) = (pu,icp)

where U is the velocity of the particle in the S frame. Evidently the charge density and
current density go together to make a 4 vector.

J'=a J

U uvy

J/'=y(J, + iﬂ‘]4) =y(J,—Vvp)

p'= y(—ng +p)

or

J =a, J

H vu v

J, = 7(J1'_iﬁ‘J4') =y7(J,"+vp")

p= 7(§Jl'+p')

Then we have

B

p=7(FJ1'+p')

Note that
pP=yp
when J,'=0.

3.3 Invariance under the Lorentz transformation
We know that J ”J u 1s invariant under the Lorentz transformation

3.3,=a,a,J, =a,a,33,=5,1,=31,

L.
wu™ u— CuwvPuavra v A

or
J J” =J2 _CZpZ :JVZ_CZPVZ

u

12



Suppose that J> = 0 (or U’ = 0) in the S’ frame, where the point charge is at rest.
J = pu = pv (the frame S’ moves at the velocity v relative to the frame S). Then we have

pzvz _ Czpz —0— Czpa _ _Czpoz

or
v 0,
Pl="5 =pos o p=—fF=—==7p,
c v
(s
4 Maxwell’s equation field fensor

4.1  Four vectors for the vector potential and scalar potential

J,=(Q,icp)
Aﬂ =(A,i l(,/5)
C
0
%=V S

The equation of continuity;
10 . 0
0,d,=V-J+(-i——)icp)=V-IJ+—p=0
. (i 2icp) =P

Maxwell’s equation;

V-D=p
V-B=0
oB

VxE=-Z
ot

VxH=J+@
ot

where

D=¢E+P
B = s1y(H+ M)

13



o
E=——A-V
ot /

B=VxA

4.2.  Gauge transformation

1
A, =(AI—9)
A=A+VA1,
— gt
¢_¢ d’
A=A +0,4
((Note))
1 1 oA
I—@'=1—¢+
c¢ c¢ o(ict)
oA
A'=A +—
4 4 6X4

Lorentz gauge:

oA
A _opovarl ifyailP g
OX o o(ict) ¢ c” ot

]

4.3  Electromagnetic field tensor F
We define the field tensor as

_OA _OA,
mox oX

o v

This tensor satisfies the Jacobi identity;

oF, oF, . oF,, _o
OX,  OX, OX,

This equation holds automatically for the antisymmetric tensor

The magnetic field;

14



F,=2 A g

12 3
oX, OX,

oA, _OA
n=o =B
OX, OX
c oA A g

ook, oox

The electric field;

-

Yo, ox, ic ¢

_OA A E T

* X ox, ic ¢’

_OA AR g

* ook, ox, ic ¢’

The field tensor is an anti-symmetric tensor of second rank and hence, has 6 independent
components.

Electromagnetic field tensor;

i
0 B -B —E
-B 0 B ——E
F#V: 3 1 C 2
|
B, -B 0 -E
i i
—E, —E, —-E 0
c ' ¢ > ¢’

We show that

. oA OA '
F =—Y__# -3 F
uv axlu, axv ' U avr or
0 0
—=a, —, and A'=a A
ox,' #oX, wooTwAns

15



c o _OA'OA' oA A

o(a, A)

_ _ o @A) | 0@,A
Toox, ox) ox,  Tox, " ox, ox,
, OA  OA

F,=a,a, (—-—%)=a F

uv yilex vr(axo- aXT) yo‘avr or
Maxwell’s equation (1)

The Maxwell's equation is given by
oF,,
ax/: =l
1
ok, _oF, N oF, N oF, N oF, 0B, 0B, _ c OE, _(VxB), _%%
OX, 0% OX, OX OX, OX, OX Ic ¢t c” ot
OE,
(VxB), = goﬂoa"' Hody = (3, + &E))
1
OFu O, OF, OFy OF,_ 0B, OB % _ .y, B), - &
OX, OX  OX, 0%  OX, oX, OXx, Ic ot c” ot
OE,
(VxB), = 501“0? + tyd, = fy(3, + &E,)
i

ok, _0F, N oF,, . oF,, N oF, 0B, 9B ¢ OF, _(VxB), _LZ@
OX, OX  OX, OX OX, 0% OX, Ic ot ot

oE
(VxB); = goluoa_;""uo 3 =t (J5 + & E5)

16



oF

au _ OFy, +8F42 +8F43 N oF, _ 1 0E +18E2 N I OE, =lV-E=/¢OJ4
ox, O0X 0%, 0OX; OX, COX COX, COX ¢C
LV-E=,uOiCp
C
V'E:ﬂoczpzﬁ
60
((Note))
)21 )’22 )’23
Bovxa= 2 & 9 (%_%@_A_%%_@_A)
OX, OX, OX;| OX, OX; OX; OX OX
ALA A
Eo_vg-B_ (L9 i OA _0b ;A _0b ;. A,
ot X, X, OX, OX,  OX, oX,
or
C(aA oA 0A, OA, OA, 8A3)
ox, OX, OX, OX, X, OX,
where
C
¢=TA4-

45 Invariants of the field

F,F, 1sinvariant under the Lorentz transformation

F.,F.=a,aa.a.FF =505 FF =FF =F,F

vp uo T vrt Ap ' or Ao pr’ Ap’ or Ap’ Ap uv': o ouv

F.,F,=2[B’+B,’ +B/’ —%(Eﬁ +E,> +E,’)] =invariant
c

uv: v

A further invariant is obtained by contraction of the field tensor with the “completely
anti-symmetric unit tensor of fourth rank” defined by

&

Kuv

0 if two indices are equal,

17



1 if (xkAuv) is an even permutation of (1234), and
-1 if (kAuv) is an odd permutation of (1234).

(Levi-Civita tensor)

One may be convinced easily that ¢, ,

E iy a,, &

L
_al('rrai'/iay',u v'v© kAuv

Now we consider

1s a tensor of rank 4 because

EaumFaaFu = €aaFnFa + & PP+ = —%iE -B
So the scalar product E-B is Lorentz invariant,
4.6  Equation of continuity

Fuv = _Fvu

_ F.+F. _ F.—-F,.
’” 2 2
F

Since

8@? =t
we have

%\] =0
4.7  Maxwell's equation using dual tensor

Using the electromagnetic tensor

18
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0 B, -B
B, 0 B
(Fyv):
B, -B 0
i i i
—-E —-E, -—-E
c ' ¢c > ¢’

the dual tensor G, is defined as

1
G,uv = Eg,uv/la Fﬂo‘
or
0 F34
-F, 0
(G#v) — 34
- F42 - F14
- F23 - F31
i
0 -—E
- C 3
|
—E 0
- C- 3 -
| |
-——E. =
c° ¢ |
- B1 2
Note that
1
F,uv = Eg/tvlaGla .

Using the Jacobi identity

OF.  OF, Fu_,
OX,  OX, OX,
we get

19



since

G oF oF oF
3 H Ao + ov VA
axv g,uv).o’ axv g/uo’v 8Xi HOVA aXU
o (PR R g
7ok, ox,  ox,

g,uvio' = g/Mo’v =&

HOVA *

Then we have the Maxwell's equation,

(a)

or

(b)

or

(©)

or

oG, 0

OX,

G, _ 0G, N 0G,, N 0G,, N oG, _ 10k, +18E2 N _aBl
OX, OX  OX, OX  OX, coy ¢ oz icot

(VxE) =- 2B,

0G,, _ G, 3Gy, 3G,

0G,,

i ik

OX, oX,  OX, OX%  OX,
0

VxE),=——B

(VxE), o 2

8631/ =aG3l +aG32 +aG33 +aG34 —

OX, oX,  OX, OX  OX,

(VxE); =——B,

C

20

OX

C OX

Cc oz

c oy

icat

i OE, i 0E, 0B, _

icot



(d)

dG,, — dG,, + 0G,,  9G,;  6G, _% _@ _%
OX oX,  OX, 0%  OX, ox oy oz
or
V-B=0
Note
G,F.,= —%(BlE1 +B,E, +B,E,) = —%E ‘B
4.8 Summary
The Maxwell's equation can be expressed by
oF,,
ox, Hlw
and
G _
OX,
using the tensors F and G.
5. Vector potential under the Lorentz transformation
1
A,u = (Aﬁ ! _¢)
C
A (. A' : 1 '
) - ( 2 I E¢ )
A'=a,A
-1 '
A=@"), A

21



Al': CAl_ﬂ¢ Al'z CAl_ﬂ¢
cy1- 4 cy1-4°
A'=A A'=A,
A'=A A'= A
_ icpA-9) _ $—CPA
A= s =
and
_CA'+p¢ _CA+f
A cy1-f? A cy1-p°
A=A A=A
A=A A=A
A = 1PN P (o)
C ll_ﬁz 1 132
6. E and B under the Lorentz transformation

6.1 Transformation
F'yv = a;z/'{ava FZO'

a,ug‘aw;F',uv = a,ufavqa,ulavo‘ Fﬂ.o‘ = a,ug‘a,ulaw;ava FAo‘ = 55/15770' Fﬂ.o‘ = Fér]
or

F/lv = a/l,uaav F'/la = (aT)/l/I (aT)vo F'Aa = (a_l)ﬂi (a_l)"U F'/I‘T

E1'= E1 El': El
E,'=y(E, —cfB,) E,'=y(E+vxB),
E,'=y(E, +¢c/B,) E,'=y7(E+vxB),
B,'=B, B,'= B,
1 ﬂ 1 1
B, :7(Bz+FE3) B, =7(B_C_2VXE)2
\ B \ 1
B, =7(B3_€E2) B, :7(B_EVXE)3

22



E =E' E =E'

E,= 7(E2'+Cﬂ83') E, =y7(E'-vxB'),

E, =y(E,'-cfB,") E,=y(E'-vxB'),

B, =B' B, =B,

B, = B'—EE' B, = B'L E'
, =7(B, c 5") 2 =7( +C2VX )2
B — B' EE' — 1 L 1
s =7( 3+C 2") B3—7(B+02VXE)3

6.2  Choice of the frame S’ which has pure electric or pure magnetic fields
From the Sec.3.5, we find that

1 . . .
(1) B’ - — E’ = invariant under the Lorentz transformation
c

(2) E-B = invariant under the Lorentz transformation
Here we assume that E-B=0 and B’ —LQE2 #0
c

Then one can find a frame S’ in which (E’ =0 and B’ # 0) [pure magnetic field], or (B’ =
0 and E’ # 0) [pure electric field]. The proof is given in the following.

(a) Pure magnetic field (E’ = 0)
We assume that E’ = 0. From the Lorentz transformation, we have

E'=E =0 E, =0
E,'= 7(E, —¢/B,) =0 or E, =c/B, = VB,
E,'= y(E, +¢fB,) =0 E, = —cfB, = VB,

The condition E -B =0 is satisfied since
E-B=EB, +E,B, +E,B,=VvB,B,-VB,B, =0

.. 1 , 1 )
The condition B* - —E* =B? ——E"”# 0 can be rewritten as
C C

B~ LE>=B">0
C

This implies that one can find the frame where B # 0 and E’ = 0.

23



((Note))

From the relation

E =0
E, =¢/B; = VB,
E,=-c/B,=-VB,

we get
E=-vxB

(b) Pure electric field (B’ = 0)
Next we assume that B’ = 0. Then we have

Bl': BIZO BIZO

Bz':y(Bz +§E3):0, or BZZ_CV_2E3
Vv

B3':7/(B3_§E2):O B3:C2 Ez

The condition E -B =0 is satisfied since

E-B=EB +E,B,+E,B,=——E,E, + - E,E =0
C C

The condition B? — iz E’=B*- Lz E" = 0 can be rewritten as
C
B2 LE=—LEic
C C

This implies that one can find the frame where E” # 0 and B’

((Note))

From the relation

=0.

B, =0
Vv
82: C_2E3
Vv
B3 :C_2E2

24



1
B=(vxE)

7. Energy-momentum tensor and Maxwell’s stress
7.1  force density

We define the vector of the force density as f,

Here we have

f. = pE; + (I xB);
where
X v 2
JxB=J, J, J,
Bl BZ B3

fl :pEl +(‘JzB3 _‘]382)
fz =,0E2 +(‘]3Bl _‘Jle)
fy=pE;+(3,B,-J,B)
f] = F]v‘]v = I:11‘]1 + Flz‘]2 + F13‘]3 + F14‘]4
i .
=B,J, -B,J; _EEI(ICp)

~(BxJ), + pE,
f, =(BxJ), + pE,
f, =(BxJ), + pE,

I I I
f,=F, J =—EJ, +—E,J, +—E.J
4 4v ¥y C 1¥1 C 2Y2 C 3¥3
:'_(E.J):i[ﬂj
c c

7.2 Maxwell’s equation
The Maxwell’s equation is given by

25



oF,

=1J
ox, Hy

v

The current density:

3, = (Jicp)
F
f,=F,J, = ! Fﬂva z
Hy 2
oF,
tf, =F, =
O X,

The left-hand side can be split into two terms,

0 0
/u0 f/l =87(F/WFVZ,)_ FVZ.GTF
A

uv
A

The second term:

0 1 0 1 0 1 0
F,—F =—F, —F +—-F, —F, =—F,—F
& oX, weoog v OX, S R ) V;“ax,1 m

14

or

0 0 1 0
F,—F, +—F,)=——F,—F, =
vﬂu(axl1 uv ) VA

0 1
ox, M2 Mex, ™

F,2F
tox, 2

Here we use the Jacobi identity;

O F +2F,+%F, =0  (Jacobiidentity)

X, X, ox, ™ -

Then we have

0 1 0
F,—F, =——6,—(F,_F
VA axl uv 4 HA axl( or o'r)

The force density is rewritten as

1o
Hy OX;

f —

U

1 oT
FWFM+Z5 F.F.)=—%

uA or’ or
X,

26
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0

+-F,—F,

2

1

ox, ™

v

0

—— 2 (F,F
48X ( 1Z3 Vl)

U



with the symmetric energy-momentum tensor (Maxwell’s stress tensor)

1 1
Tﬂvzlu—o(Fﬂ}vFlv-f—Zé‘ﬂiF F )

or o7

1 1
T[T, 1=T, =’U_(FMFM +ZF F.)=0

or’ or
0

7.3 Conservation law

a—quV~S =-E-J

ot

u =l($0E2 +LBZ)
2 Hy

0S =
goﬂog"‘f =(V-T)

where
1 L
S=—(ExB) : pointing vector
Ho
G=¢,u,S= CLZS : momentum of the field
f=pE+(IxB)
1 1 1
T; = (s, EE; +—BB;) —Eé}j(goE2 +—B?)
Hy Ho
or
1 1 1 £, B2
Ho Ty _(C_inEj + BiBj)_Eé}j(C_z +B%)
where ¢’ =
80/’10
(J,)=@,icp)
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0 B -B —(E
B, 0 B --E
(F;tv): ?
B, -8 0 —CE
| |
Ye, g, e, 0
c ' ¢ > ¢’
I
HT = PP+ 10, F

where

1
FyF.o = (B + B+ B~ (B} + EX 4 ED)

F.F..= : E1 E, + BB,
1

F2aFa3 = C_2E2E3 + BzB3
1

la” a3

FuFis = EE +BB,

F.F l(E283—BZE3)_—'ﬂs
C

la a4
FZaFa4 = _é(E3Bl - BIE3) = Iluo S

i i
F3aFa4 :_E(Ele - BZEI) = IUO S

FlaFal =CL2E12 _(Bzz + B32)
FZaF(ZZ =CLZE22 _(BBZ + Blz)
F3aFa3 =CL2E32 _(812 + Bzz)

FF.,= Cl (EZ +E2+E2)

The Maxwell’s stress tensor is given by

28



1 1
KT :z_cz(Elz - Ez2 - E32)+§(B12 - 822 - B32)
1
LTy = C_z EE,+BB,
1
LT3 = ?EBEI +B,B,
[ 144, .
Moy = _E(EzB3 -B,Ey) = _TSI = —1,cG,
/uoTzz = Lz(_E12 + Ez2 - E32) +l(_B12 + 822 - 832)
2C 2
1
HoTyy = _2 E,E; +B,B,
HoTyy = (E B,-BE;)=- ,Uo —=S, =—iu,cG,
1
Moy = 2_(:2(_E12 - Ez2 + Esz) +E(_Blz - B22 + B32)
[ 144, :
Moy = __(Ele -B,E)= __Ss = -1, cG,

Ul = (B +B, +B )+ 2(E +E, +E) MU

Explicitly, the elements of T are

T11 T12 T13 - iCGl
(T;w) _ T21 Tzz T23 - iCGz
T31 T33 T34 - 'CG3

—icG, -icG, -icG, u
T,+T,+T,;;=-U

8. Lorentz force
8.1  Origin of the Lorentz force

Consider a particle of charge g moving with velocity v (along the x axis) with respect
to the reference frame S in a region with electric and magnetic fields E and B.

In the frame S, the Lorentz force on this charge is given by
F=q(E+vxB)= (quaq(Ez —VB3),q(E3 +VBz))

In the frame S’, the Lorentz force is given by
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F'=qE'=(qE,',qE,".qE;")
where ( is a relativistic invariant and is at rest.
The fields in S and S’ are related by

El': El
E,'=y(E,-VB;)
E,'=y(E;+VB,)

Then we have

F1'= qE1'= qu
F,'=qE,'=qy(E, —VB;)
F,'=qE,'=qy(E; +VB,)

What is the relation between F and F’?

F'=qE'=dE =F
F,'=qE,'=qy(E, —-VB;) = )F,
F'=qE;,'=qy(E; +VB,) = /&

or
F=F
=k
H=F

8.2  force density and charge density
f=pE+(IxB)

We choose the frame S’ in which the system with the charge density is at rest.
We now calculate the force density vector

f ' — pl E|
when J'=0 (the system is at rest).
We note the Lorentz transformation of 4-dimensional vector, current density and charge

density
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3, =(J,icp)

J=y3,'-183,") =y(3,'+vp")
p

p= 7(?J1'+p')

Then we have

p=p'
Jy=wp'=pv

The Lorentz transformation of E and B,

Elvz El
E,'=y(E, —VB;)
E;'=y(E; +VB,)

Then we have
A'=(p'1E,, p'y*(E, —VB,), p'y* (E; +VB,))
or
A'=(pE., py(E, —VBy), py(E; +VB,))
In the frame S, the Lorentz force is given by
f = plE + (vxB)] = (pE,, p(E, -~ VB,), p(E, +B,)

Thus we have

7f1': fl
fz': fz
f,'= 1,

9. Lienard-Wiechert potential
9.1 Lienard-Wiechert potential
We now consider the Lienard-Wiechert potential
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F

Field paint

vt

In the S’ frame:

Y

_q 1
4reg, r'
A'=0
v v
A V+C7¢V A C72¢l
N N
Az:Az' or A2:0
A=A A =0
g VR P B |
1-p \/1_ﬂ2 47[50\/1_132 r
Then we get
¢ q 1 1

¢= \/1_132 - dre, \/1—ﬁ2 \/x1'2+x2‘2+x3'2

where
X;'= y (X, —vt)
Xz': X,
X3‘: X5

The scalar potential ¢ is given by
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. q 1 1 . q 1
476, 1= B2 00—ty + %2+ %0 A8 (=t + (1= B0 + %)

or

_.q 1
4re, R

*

with

R =%~V + (1= (% + %))

Similarly we have for the vector potential

A=(A,0,0)
with
V '
A= 2! V. g 1 _quyl
\/1_132 c’4re, R 4z R

The electric field E and the magnetic field B are given by

E:—gA—V¢ and B=VxA

4rs,
B =lzx E
C
where
R :(X_Vt> yaz)

For a slow moving charge (v<<C), we can take for E the Coulomb field. Then w have

Vv V XTI V XTI
B=—3xE= . 22=&q 2
c 4reC’r® 4Am v
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((Mathematica-10))
Lienard-Wiechert potential

<<Calculus " VectorAnalysis”

SetCoordinates [Cartesian(x,y, z]]
Cartesian(x, vy, z]

R=vV (X-vt)2+ (1-p2) (Y2 +2?)

Vtvex2s (21 22) (1-62)
a1
" 4xe0 R

q

Ar~ (—tv+x) 2+ (y2+Z%) (1-532) 0
aL- AVeO 1
47 R
qv .0

Ax\ CEVix) 2 (Y2i 23 (1-39
A={A1,0,0}
qvu0

. 0, 0}

{4nv (-tv+X)Z+ (Y2+ 2% (1-p9
Bl=Curl [A] //FullSimplify
(0 avz (-1+8% 10

T An ((~EVeX)2- (Y21 72) (~1+p82))327

i qVvy (-1+4%) 10 |
Ay ((-EV+X)2- (y2+22) (-1+p2))3/2
Electric field in the frame S
El= -Grad[¢] - DA, t] /. {u0-1/ (e0c")} // FullSinplify
{ q(-c2+V%) (tv-Xx)
AC27 ((-EV+X)2- (y2+22) (-1+p2))32c07
qy (-1+6%)
An ((~tV+X)2- (Y2:272) (-1+42))32¢0°
qz (-1+6%)

A ((—EVeX)2- (Y24 22) (—1+/32))3/2€0}
V1={V,0,0}
{v,0,0}

eql= @ Cross[V1, E1] // Simplify

qvz (-1+ 69
“tvix)2- (y242?) (-1482))%2e0
) qvy (-1+6?) |
4C2 ((-EV+X)2- (Y2+72) (-1+32))32¢0
1 I
1-Bl/. {u0-> —— Simpli
eq /- {u —>C260}// mplify
{0,0,0}

{0’ 42 ((

9.2 Distribution of the electric field
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q Ry
E= 1-p5)—~
47:50( 'B)R”‘3

where

R™=y(x=v)* + (1= B)(y* +2°)

R =(X—Vt,1- B2 y.\1- B°2)
R, =(X-Vt,y,2)

R, is the relative coordinate of the field point and the charge point. The electric field is
along the position vector R,. R, is a vector from the instantaneous location of the charge

in S to the point where E is measured in S.

((Mathematica-11))
The electric field of a charge moving with the constant speed with v (= Vv/C) on the unit

circle of the real space

Lienard-Wiechert problem; field for a uniformly moving charge
<<Graphics PlotField"

ElX[e_, B 1 := X (1-£) 3 /- {X - Cos[e], Y- Sin[e1} // Simplify
(«/ X (1- 73’27372)
] y (1-8%) _ —
ElY[e_,B ] 1= — 3 /- {X-Cos[e], y-Sin[e1} // Simplify
(V3T V)
E1X[6, Bl
(1- 8?) Cos|e]
(Cos[e]2- (-1+p2) Sin[e]2)%2
ElY[6, Bl
(1- %) Sinfe]

(Cos[6]2- (-1+p2) Sin[s]2)32

s1[B 1:=Table[{{E1x[6,B]1,E1Y[6,B]},{E1X[6,B],E1Y[6,B]}
},{6,0,2 x,n/32}]

s2[B_]1:=ListPlotVectorField[ Evaluate[sl1[B]]//N//Chop,C
olorFunction-Hue,

AspectRatio-»Automatic, ScaleFactor-1l,Frame-»True,PlotPoi
nts-20,AxesOrigin-{0,0},DeFaultColor-Hue[0.6] ,DisplayF

unction-»Identity]
General ::spelll : Possible spelling error @ new symbol
nane “'DeFaultColor ™ is similar to existing symbol ‘*‘DefaultColor . More.

£=20,0.04,0.08,0.12,0.16
£=0.20,0.24,0.28, 0.32, 0.36
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psl=Evaluate[Table[s2[B],{B,0,0.36,0.04}]1];Showl[Graphic
sArray[Partition[psl,5]],DisplayFunction-»$DisplayFunct
ionl]

2
1

= 0=
-1

S :

2. > -
2-101 2

- - // oL N
-1494683.5 -14.635 -1448835
-GraphicsArray-
£=04,0.42,0.44,0.46, 0.48
B=0.50,0.52, 0.54, 0.56, 0.58

ps2=Evaluate [Table[s2[B],{B,0.4,0.58,0.02}]1];Show[Graph
icsArray[Partition([ps2,5]],DisplayFunction-»$DisplayFun
ction]

2.5 D.®.5 DA
-GraphicsArray-

$=0.6, 0.62, 0.64, 0.66, 0.68

£=0.70,0.72,0.74, 0.76, 0.78

ps3=Evaluate[Table[s2[B],{B,0.6,0.78,0.02}1];Show[Graph
icsArray[Partition([ps3,5]],DisplayFunction—»$DisplayFun
ction]
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-GraphicsArray-
£ =0.80,0.91, 0.82, 0.83, 0.84,
B =0.85,0.86,0.87, 0.88, 0.89

ps4=Evaluate[Table[s2[B],{3,0.8,0.89,0.01}1];Show[Graph

icsArray[Partition[ps4,5]],DisplayFunction—»$DisplayFun
ction]
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-GraphicsArray-
£=0.9, 0.91, 0.92, 0.93, 0.94
$=0.95,0.96, 0.97, 0.98, 0.99

ps5=Evaluate [Table[s2[B],{B,0.9,0.99,0.01}]1];Showl[Graph
icsArray[Partition[ps5,5]],DisplayFunction-»$DisplayFun
ction]

38



3]
3 3 l \ \
\ {‘\\ “"7 2\ /2
2| : 20
1
1 1 1
q s 4 q : ¢ q ;< 9 ;<9
1
2
AR
Py 1

0L 24 YN Yo )

o -
4 7.5
‘ | 4
| | 4
\ / ‘ | 4\ “‘ 5
\ /
2! !
3 2
2 2.5
o ;¢ q ;¢ q e q E
- 2.5
-2
2| \ z
’ \
[ S
o [ | 4|
R o 4l
P &
« | |
-6
OADE4 -ONPR4  -00AE4  -00MNR4 @2
-GraphicsArray-

10.  Relativity of Electric field and magnetic field
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——- q

E=0and B#0

We consider the charge g moving along the X axis in the presence of the magnetic
field B (the frame S). In the frame S, there is only an external magnetic field B. Thus the
magnetic force on the charge is given by

FL =q(Vx B)

Suppose that there is no electric field (E = 0) in the frame S (B # 0). The E’ and B’ in the
frame S’ are related to those in the frame S as

E'=E =0
E,'=y(E, —cfB,) =—-wB,
E,'=y(E; +¢fB,) = WB,

B,/'=B,

B,= (B, + 2 E,)=
X'=7( 2+C ) =18,
B/~ (B, -LE) =58,

or

E'= y(vxB)=VxB' (1)

Then the force (electric force) on the charge q in the frame S’ is
F',=qE'=qy(v=B)

since the charge q is the same for any frame and the particle is at rest in the frame S’.
There is no force due to B’ since the particle is at rest in the frame S’. F'; is the force of
F’ in a direction perpendicular to the velocity v. Thus we have
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11. Derivation of the Biot Savart law

B’=0 and E’# 0.

We consider that the magnetic field B’=0 in the frame S’. In the frame S’, there is
only an external electric field E’ (the point charge is at rest). The E and B in the frame S

are related to those in the frame S’ as

E =E' B =0
Ez :7E2' Bz :_CLZVE;
E, =&
B3 :%ﬂE;: lZVEz'
or
/4 n_ 1
B=—2(VXE)=C—2(VXE), 2)
C

Using the result from the Lienard-Wiechert potential (/<<1) (see Sec.8)

q 2 R q r
E-—d q_py R 9 T

472'80( g )R"3 drg, 1’
B=L(vxEy=L & VXI_k QVxF

c’ CCldzs, 0 4z o

which is the application of the Biot-Savart law to a point charge.

12.  Ampere’s law (Feynman 13-9)

We consider that the electrons located on the linear chain (the line density —4y) moves
at the velocity v. At the same time there are positive ions located on the same chain (the

line density 4y). We now consider the frame S’ which moves at the velocity v.
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((Formula))
pP=p

where p for the frame where the particle moves at the velocity v along the x axis, and p'
for the frame where the particle is at rest.

We assume that
(1) The line densities of electrons and positive ions are given by — 4, and + 4, in the

frame S.
(2) The line densities of electrons and positive ions are given by A and A, in the
frame S’
1 v
(=4)=y(=1) or A = ;10 = 1—6—2/10 for electrons
1

A =4, or A, =7k = —2/10 for ions

\"

1 — —
C 2

The net line charge density in the frame S’ is
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YLy Ry RS S R | PRy S Sty

2

((Note))
This relation can be also derived from the Lorentz transformation of the 4-
dimensional current density

3, =(,icp) = (pv.icp)

J'=y(J, +iBI) =y, -Vp)

p'= 7(—%31 +p)

J =a J'

M v v

J=y3,-183,") =y(3,'+vp")
p

p= 7(;J1'+p')

Here we define

A=Ap
ﬂ/': ApV

A is the same for the S and S’, since the plane of A is perpendicular to V.

B B v?
AM=y(-L2) + V) =yEZiv=y—21
7( o ) roAVET Eh

where |, = AJ, =(-4,)v and 1 =0.
So the positive line density produces an electric field E’. We use the Gauss’s law.
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‘ Electric field

The electric field E’ at the distance S from the axis of the cylinder,

~
\J

E'(27sh) = 4 (hA")
E

0
where s is the radius of the Gaussian surface (cylinder).

or

! 2
- 1 Vv,
2re,S 2me,S C

So there is an electrical force on q in S’;

2

g \'
F '=qE'= — A
L=4 27&903)/02 ’

But if there is a force on the test charge q in S°, there must be one in S. In fact, one can
calculate it by using the transformation rules for forces. Since q is at rest S” and F| is

perpendicular to the X axis. Then we have

F'=F or FL:lFL'

4
Using this result we have
2
F, _1 F,'= q V_2,10 _ 94 V(VA,) = qMV
% 2rg,S C 278 278
where B = #VAy) is a magnetic field due to the line current density VA, (Ampere’s

law). The force has a formas F =qvB.
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13.  Derivation of the Ampere’s law from relativity
We analyze the fields and currents as viewed from two frames. S where the ions are at
rest. S” where the electrons are, on the average, at rest.

3, =(@,icp)
J,=@M,J,'=a,J,

uvv v v

Multiplying the cross-sectional area (A) of the wires, we obtain the following
transformation for currents and linear charge densities.

|, =AJ, = (AJ,icAp) = (1,ic2)

_ ]
I#_avﬂlv

L=y, = y(1,+vA)

I, =icd = y(if1,+1,") = y(iL 1, +icA)
C

or
Ii :7(Iil+Vﬂ'i')

A=y (o144
=LA

where 4 = Ap, the subscript 1 is neglected and the plus and minus subscript refer to the
ions and the electrons, respectively.

In S° we know that | '=0 since the electrons are at rest.
\Y
A=y 1+ ") =y4"
C

In S the net charge per unit length must vanish.
0=A4+4 =24, +y4"'

or
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The fields in S’ due to A_' are

2’ '
E '=——e,
2re, 1!

B '=0

The fields in S due to A, are

E, = A, e,
2re,r
B,=0

We now consider the field transformation for

A

E '— -

- 2rme I"er
0

B '=0

noting that f =f' (perpendicular to the X axis), we find that the fields in S are

E —E'-0 B,=B'=0
E, =y(E,'+cfB,") = )&, B, :%(CBz'_:BEa')Z_CﬁzE;
E3 :7E3'

B, =L (&, +eB)) = TE;

or
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e

E — r ﬂ/ V’
B 7/27z50r B
B =L (vxE"

C

Then the total fields in the frame S are

E=E +E =—% (1 +74")=0
2rg,r

B=B,+B =B =L (vxE ")=L(vxe,)——= 43 v (e, <€)
c c 2y’ 2me,C r

Since |_=y(l1_'+vA_") and |_'=0, we have
I =i’

Using e, xe, =e,, we obtain

B=—”"I‘e¢
2ar
E=0

We see that a magnetic field due to current flow is a relativistic effect.

14.  Capacitance moving along the x axis with a uniform velocity
14.1 The capacitance moves along the x direction which is parallel to the electric
field of the capacitance.

In the frame S’ where the charges are at rest.

E'=Z
€o

E,'=0

E,'=0
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and

B'=0
B,'=0
B,'=0
E =E' B =0
E, =0 B,=0
E,=0 B,=0

Thus we have
where o'=0o

14.2 The capacitance moves along the x direction which is perpendicular to the
electric field of the capacitance.

In the frame S* where the charges are at rest.

E'=0 B,'=0
E,'=0 B,'=0
Esvzz B3 :O
80
where
o =yo'
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E, =E'=0
E, = #(E,"+cB,") =0

1

1 1 1 G G
E,=y(-cfB,'+E,")=)E,/'=y—=—
& &
B,=B'=0
\ \ - PE;' v o' V o

c cyl-f3° c'g C 8_0
B, = y(g E,'+B,")=0
15.  Relativistic-covariant Lagrangian formalism
15.1 Lagrangian L (simple case)
Proper time
(dxﬂ')z =a,a,0x,dx =0, dx,dx, = (dx#)z

We define the proper time as

(ds)’ = c2(dt)* — (dx,)* — (dx,)* — (dx,)* = c*(dt")* — (dx,")* — (dx,")* — (dx,")’

> opaeag L OXo o dX %2:2 2_12
(ds)" =c*(dt)* {1 Cz[( pm )" +( it )" +( pm )1} =c(dt)"(1 =2 )

or

where 71is a proper time and U is the velocity of the particle in the frame S.

b
The integral I ds taken between a given pair of world points has its maximum value if it

a
is taken along the straight line joining two points.

b t, 2 t,
S z—aJ.dS = —OCCIdtwfl—l;—z = J.Ldt
a t, t,

where
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2
L:—azcwfl—u—2
C

Nonrelativistic case

2 2
u u o
L=—ac(l-—)"* =—at(l-—)=—U’-acC
c 2C 2C
In the classical mechanics,
a m
—=— or a=mc
2c 2

Therefore the Lagrangian L is given by

u2

L = —-mc 2(1 _ C_2)1/2

The momentum p is defined by

p—%— M (u)—mg—mEﬂ
ou 2 dz dtdr
s
((Note))

This momentum coincides with the components of four-vector momentum p,, defined by

X
Pu dr

15.2 Hamiltonian
The Hamiltonian H is defined by

H=p-u-L=yumu’+mc’

_y?mu’ +me? _ 2 _
y(u) y(u) e u’

or
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E = -
u
1-—
C
We have
u2
2.2 2,,2
E2 mZCZ mC(l_?)+mu - s
== ~= - =m’c’ +p
C 1 u 1 u
2 2
C C

15.3 Lagrangian form in the presence of an electromagnetic field
The action function for a charge in an electromagnetic field

S = T(—mcds +0A,dx,)
a
where the second term is invariant under the Lorentz transformation.
A, = (Al %¢) . and  dx, = (dx,,dx,. dx,.icdt)
Then we have

b b 2
S= I(—mcds +0A,dx,) = I[—mcz1 Il —2—2 +q(A-u-—¢g)]dt

The integrand in the Lagrangian function of a charge () in the electromagnetic field,

L =-mc?,[1 u2+ A
=— 2 q(A-u-¢)

p:i: mu +qA
ou u?
1_072
where
A = A'1
= ( ’IE¢)

The Hamiltonian H is given by
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2 2
H=p-u-L= mu - +eA-u—(—mcz,/1—u—2+qA-u—q¢)
u c

e
or
mu’® ) u’?
H=p-u-L= 2+eA-u—(—mc l-—+gA-u-qg)
u C
e
2
H=—" ¢
u2
e
or
2
H-qg) mzcz(l—u—z)+m2u2
( : j = e =mc +(p-gAY
c u
e

15.4 Expression for the Lagrangian in terms of 4-dimensional velocity
Here we use drinstead of dt in the expression of Lagrangian.

ds=cdr

1, 1s a four-dimensional velocity defined by

d d
p = SO W, W) ey (W)
2 dr dr dt

An,=Am+An,+An+An,=ywu-A-9)

since
dt dx, . dt
=———7=IC

1
A =(AI—9¢), = —
W= (AT TS Urdt  de

b b
S :j(—mcds+qAﬂdxy) :I(—mc2 +0A, -17,)d7
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L=-mc’+0An,
15,5 Lagrangian and Hamiltonian in terms of the field tensor F,,

F,F,=2(B’+B,”+B,)) —%(Ef +E’+E)”)
c

uvouv

This is invariant under the Lorentz transformation.
We may try the Lagrangian density

1
L= PPt A,

v ouv
0

By regarding each component of A, as an independent field, we find that

the Lagrange equation

o _o. d
“ox - OA
oA, X 50,

OX

v
is equivalent to

oF

uv

OX

U

= U -

The Hamiltonian density Hen, for the free Maxwell field can be evaluated as follows.

L -1 FE

em uv' ouv
4u,

oL, OA 1 1

=
Hem=¢_ﬂ_l-em:_ 4#(F4,¢1+6A4)_ (Bz__zEz)
5 oA, | OX, M oX,” 2u, C
oX,
or
I e, 1 oo
H,=—¢E +—B —gE-V§
2 2u,
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1 2, o 1 2, 1 o
jHemdr_Ej(goE +2—ﬂOB )dr—ng(E-w)dr_Ej(goE +2—ﬂOB ydr

((Note))

[(E-Vg)dr =[[V-(E¢)-¢V-Eldr = [V-(Eg)dr = [(E¢)-da=0

where E¢ vanishes sufficiently rapidly at infinity.

v.E=L -0 (in this case).

&y

16. Relativistic form of Newton’s law
16.1 Relativistic force

We define the force F and the kinetic energy T as

Fdp
dt
ar _ A=F-u
dt
where U is the velocity of the particle.
I ypop P 4 M mu2 4!
dt dt dt u? d u? dt u?
s S s
or
u. du
A:d_T: d_u—l 7 +mu2 dt T3
dt dt u2 2
C C
or
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where C is a constant of integration. Since the kinetic energy may be taken as zero for u =
0.

16.2 Relativistic energy
Then we have C = =mc>.

T__me 5

It is convenient to introduce a quantity E defined by

2
¢ == y(u)mc’

u
-
c

E=T+mc’*=

E is the energy of a free particle

17. Four-dimensional momentum
17.1. Definition

2
ds =cdt1/1—u—2 _cdt
¢ )

dz':E— at

2]

where 7is a proper time.

y(u)=
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Here we define the four-dimensional momentum

d ) )
p= m—dd X = Mp(U) 2 = (my(U)U,, My (U, My (UYL, imey (W) = (p,i =)
T dt c

This is exactly the same as the expressions of p obtained from the Lagrangian.

mc?

E=mc’y(u)=

17.2  Lorentz transformation
This momentum is clearly a four-vector since dx, is a Lorentz four-vector and m and

drare Lorentz scalar. In fact, under the Lorentz transformation

p ':mix '=ma ix =a, p
V% dT 7] ,uvds v uv My

(p,u')z = a,uva,u/l pv pi = 5\//1 pv pi = (p,u

So this is invariant under the Lorentz transformation.

. E
p = (pal_)
C
pv: p1+i:8p4 pl_fE
1 _ ) p '—
J1-8 T
pzj P2 or p,'= P,
b= Ps p,'= P,

' _iﬂp1+p4
p,'=—F——" . E-/pcp
Lo Sy

and

56



P, :M p1'+ c
Ny AN
p2 = p2' or p2 — pz'
p3 = p3 p3 — p3'
_ipep,

P, _ E+pcep
'\[1—,82 E_ l_ﬁZ

18.  Four-dimensional velocity (or proper 4-velocity)

2
ds=cdt1/1—u—2 _cdt
¢y

ds dt

dr=—=——
[ A0))

where 71is a proper time. y(U) =

Here we define the four-dimensional velocity by

_dx _dt dxﬂ

ny—}af——dTTH—=(7UDUU7@DUp7uD%,E7UD)

where U; is the 3-velocity

dx; i

u. =—1 1= 1, 2, 3
R ( )
77;1': a‘,uvnv

n' e 0 0 ipr\m
m' |0 1 0 0 |n
7' 0 01 7
n)') \=iBy 0 0 y \n,

or
M, = 3,1,
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n) (v 00 —igy\n'
m| |0 1.0 0 |n
| |0 01 0 [n
n,) gy 0 0 y \n
with
1
IS
=
21.  Force
dp, dtd 1 dp d
F ey e R
7(1"'?“1')

dp, _dtdp, _dp, 1

dt dt dt'  dt y(l+ful')

dp, _dt'dp, _dp,' 1

dt dt dt' dt 7(1+ful')
When u,'=0 and du,'/dt'=0
d dt' d 1 dp,' d ,
T Uiy e R A CD)
]/(1+—U1')
C

dp, _ 1dp,’

dt  y dt’

dp, _1dp;’

dt y dt’

22. Minkowski force
We define the Minkowski force as
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dp
K =—#
“odr

This is a 4-dimesional vector. The spatial components of K, are related to the ordinary
force by

_dp_dtdp_ 1 dp_ 1
dr drdt Jj—y?dt 1-u?

The 4™ componenet

dp, _dtdp, _1dE

K, =
dr dr dt c dt

23 Lorentz force in the relativistic mechanics

23.1

_dp _
F=r =OE+(VxB)]

©

holds in an arbitrary frame S. This expression is the correct relativistic form for Newton’s
second law. The momentum form is more fundamental.
The four-dimensional momentum is given by

\'
p=m >
\'
==
C
2
mc
Eyin = V2
-
C
2
\Y
2 2.2 mzCz(l—fz)+sz2
E° mc” c _ m2n2 2
C_z_ 2 = v2 =m<c +p
1-— 1-—
C C

or
2.2 25\1/2
En =C(M°C”+p7)

The final form of the equation of motion is given by
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9 e+ (vxB)] (1)

dt
v
p_ Vza
1—Cz
dE
—=F.v=q(v-E
ot q(v-E)

where

E. = Lz =cq/m*c’ +p° (2

24.  Cyclotron motion: a particle in a uniform magnetic field along the z axis.
We now consider the case of E = 0.

d
a Ewn=0
Thus we have y(v)= ! — = E—"”; = constant
Vv mc
-7

The momentum:

The equation of motion

2

d C
—v=——-o((vxB
o q(vxB)

kin

or
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v, = \Y
y
Ekin
2
cgqB
Vy =- E v,
kin
v, =0

We use the complex plane for the solution.

d : ic’qB .
a(vX +Iv,)=— ) (v +1vy)
or
)
(W, +iv,) = (v, +iv,")exp[—— B\ expl-i(wt + )]
kin
where
2
o= cgB
Ekin

ia

v, +iv,” =ve”

Then we have

v, = % =Vcos(at + a)
dt

v, = v =—-Vvsin(wt + o)
dt

or

v’ +Vv,” =Vv* = constant

v .
X =—sin(at + a) + X,
0]

y= lcos(a)t +a)+Yy,
10}

This equation describes a cyclotron motion (circular motion with radius R).
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R:l_VEkin — p

a)_cqu q_B

where w is the angular frequency,

o= cgB
Ekin

or
BR=—p

. . \'
The radius has a maximum when — =

-

c
In summary
2 2
+ 2
‘= Pox + Poy Sin(c th+a)
qB Evin
[ 2 2
+ 2
= Pox pOy COS(C qB t+ 0()
aB kin

25.  The motion of the particle under an electric field (E=-V¢)

d d
—E,. =q(v-E)=—qv-Vé=-q—
dt kin q(v ) qV ¢ th¢

or

or

E,., + ¢ =constant

We now consider the capacitance consisting of two parallel planes. Suppose that the
particle with charge q on the one plate moves to the other plate. The initial velocity is
equal to zero. What is the velocity of the particle arriving at the other plate?
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Ein +09, = mc’ + a4

When ¢=4¢, - ¢,,

Vv mc
1 - CT
or
1
Vzc[l_—]l/Z
(1+ q¢2)2
mc

26.  Equation of motion under a constant electric field
We assume that E is along the y axis. The initial momentum py is in the (X, y) plane.
The particle is at the origin at t = 0.

Sp - M
p=p,+qgEt
or
P = (Pox, AEL+ Py,,0)
En = C(M°C* +p*) 2 =[mc* +C(py,” + Py, )+ (Q°Et” +2py qED]?
or
En =[(Egn )* +C*(Q°Et> +2p,,qEL)]*
where E,;’ is the kinetic energy at the beginning of the motion (t = 0).

Ekin0 = \/m2c4 + CZ( pox2 + p0y2)

p — mv =mv Ekin _ EkinV
\/ NE: mc®  ¢?
1- 2
C
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Thus we have

2 2

c2 c
,qEt + p,,.,0) =
(Pox-d Poy ) [(Ekin0)2 + (:2(q2E21:2 +2 pquEt)]

v=—""p-=
Ekin Ekin

1/2 (p()X’th + p0y70)

or

dx _ C? Pox
dt  [(E, ) +C(q°E*t” +2p,,qED)]">

dy _ C*(Pyy + 9ED)
dt  [(Eg )’ +C’(q°E’t* +2p,,qEt)]"*

dz

=0
dt

Solving these differential equations (we use the Mathematica),

1
y= q_E[\/(Ekin0)2 + Czquzt2 +2 poyc2 Eqt - Ekmo]

or

c E.°
y= q—Em Poy +GED)” +MC” + py, 0 — =]

_ CPox 1y Poy +QEL+ \/( Poy + gEt)’ + m*c® + p,,’
i~ Eu’

kin
Py, +
oy c

X

z=0

We now consider the special case when p,, =0.

B _ g +mic s+ p,,” et 4,
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oy, GEL+(GED’ +mc + p,,’

qE \/m ¢’ + Poy
or
e TEX _ GELH J(GEL® +mc® + p,,/”
CPyy \/mzcz + Dy
exp( qu) _ Jm’e’ + p,,’ _ —OQEt+ JED? +m*e* + p,,”
CPyy  QEt+ \/(th)z +m*c + p,,’ \/mzc2 + Doy
COSh(qu \/(th) +m*c? + pOx
CPox \/ m*c’ + p,,’
B e, = (a7 + e p, = e b, cosh(E)
0x
or

0
y= Eq"'” [cosh(g;)zx) 1]— By [cosh(qEX) 1]— \/m C + Poy [cosh(q

Thus in a uniform electric field, a charge g moves along a catenary curve.

((Mathematica-13))

Zimmerman
2D motion of a relativistic particle in a wuniform

electric field
V1< {pxU qgEOt

m
{Ko EOqt, O}
m m
§2
eql = - Y1.Y1
1- %
g2 px02 E0? g? 2
2 T e
1- % m m2
eg2=Solveleql, &l //Simplify
A -c? (px0? + EQ2 g2 t2) } {

te-- VGZn2 0% E? P82
Pt

- 0}

V -c? (px0? + E0? 0 t2) }}
N
V -c?m? - px0? - E0? o 2
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e
eq3 = 1-;%5 /-€e02[1211 /7 Simplify

\/ 2 m

c2m2 + px02 + E02 2 t2
V={x'[t],y"'[t],z"'[t]}
X[t,yt, zt)
eg4=eqg3 Y1

2 2
PO | 22 2 R 22 Eocft\/dzmapnﬁuaﬁkﬁtﬁ

m m
eq5=Table [V[[i]]=eq4 [[i]],{i,1,3}]

22
Q”D\/cznzﬂyozqzﬁqztz

m

[x1t -

quth2ﬁ¢$2;a@@

v - L Z[t] =0
Yyt - Z(t) =0}

eg6=DSolve[{eg5, {x[0]=0,y[0]=0,z[0]=0}},{x[t],yI[t],z[t
1},t1//8implify

s L _
{{X[t] 5 ?an {pxo\/(:Zn:;er;(OZ \/ 22 + px0? Log{Z\/02m2+px02} +

X0 J c2n? \/ c2m?+ px02 + E0? 2 12
+ +
P c2m + px02 + E02 2 t2 P g

Log|2 (EOqt+\/c2m2+px02+E02q2t2)]

—_——
]

| J 2R J 22 |

I\ 2 m2px02 2 m+px02E02 R 2 }‘

y[t] > , Z[t) »0}}
Eq/ 2P 22
2 m2+px02 2 mz+px02+E02 q2t2

rulel={m->1,g-1,E0-0.1,px0-0.1,c>1}
{m-1,9-1,E0-0.1,px0-50.1,c-1}
x[t ]=x[t]/.eq6[[1,1]1]/.rulel//Simplify
~0.698122 +

1
1- 710-0499 m

z[t 1=2z[t]/.eq6[[1,3]]/.rulel//Simplify
0
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pli=Plot [{x[t],yI[t]l},{t,0,30},PlotStyle~Table[Hue[0.5
il,{4i,0,1}1, Prolog—AbsoluteThickness [2],
PlotPoints—50, Background—-GrayLevel [0.7]]

-Graphics-
Nonrelativistic motion

xnon(t ] = % /- rulel

0.1 t

ynon([t ] = qE0t /.- rulel

0.05t

pl2=Plot [{xnon[t],ynon[t]},{t,0,30},PlotStyle=Table [Hu
e[0.3 i1, {i,1,2}1, Prolog—AbsoluteThickness[1.6],
PlotPoints—50, Background—GrayLevel [0.7]]

-Graphics-
Show [pll,pl2]

-Graphics-
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28. A particle in a uniform electric field and a magnetic field
Let the electric field E be parallel to the y axis and the magnetic field B parallel to the
z axis. At t =0 the particle is at the point (0,0,0) and has a momentum p,.

Lorentz invariant:

d
GP=F=dE+(xB)] ()

According to the Lorentz invariance, we have

BZ _LZEZ — BvZ_iz E|2
C C

E-B=E'B'
Since E-B =0, we have E'"B'=0
(1)
We assume a frame that B'=0.

In this case, we have

B’ —%Ez =—i2E'2<0
C C
or
BZ<LZE2
C
or
1
B3 <EE2

This is a condition for E and B. Using the Lorentz transformation, we have

E,'=E =0
E,'= y(E, —c/B;) B,'= y(Bz+§E3)=O

E,'=y(E;+cfB,)=0 B
B,'=y(B, _FEz)ZO
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We choose B,'=0
| B
B,'=B, —FEZ =0
or
S

V=C

In this case,

B'=0
1 E
E,'=y(E,-cpB,)=—E,=—=F
v 4
E'=0
E,'=0

The frame S’ move relative to the frame S with a velocity v along the X axis. We know the
equation of motion for the particle in a uniform electric field E' along the y axis.

- Cp0x'ln pOy'+qE't'+\/( Po, +AE't)? + m’c® + p,,
qE' E 0y

kin
Poy +— 01—
Y o¢

XV

' Y 1 141 ' E ino'
y =Ew<p@y +HE'T) +mic + py, =]

0 2.2 2 25172
Ekin' :C(m c+ pOx' +p0y' )

. B
with v=c’ = <c
2
0 = 0 o
The Lorentz transformation between p, = (p,,i—") and p,'=(p,',i—"—) is given
c c

by

69



Po"= 7Py, _é Ekmo)

p02'= Po2
p03': Pos
EkinO': 7( Ekin0 - ﬂCpm)

The required equations of motion for the particle in the frame S is obtained using the
Lorentz transformation.

s ' X= X'+vt'
X =y (X'=1px,") _7$ )
X2 — sz y - y
, z=17
X; =X, IB
X, = y(18%'+X,") t= 7(? X'+t')

(2)
We assume a frame S’ that E'=0.
In this case, we have

B~ LE2=B">0
C

or
B? > LZE2
C
or
1
B3 > EEz

This is a condition for E and B. Using the Lorentz transformation, we have
B,'=B, =0
E'=E =0 B
E,'=y(E, —cfB;) B,'=7(B,+—E;)=0

C
E,'=y(E; +¢fB,)=0 ' Yij
B,'= y(B, _?Ez)
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We choose E,'=0

Ez': 7(E2 _CﬂB3) =0
or

v-5
BS
In this case,
E'=0
. 1
B,'=7(B; _EVBz) =—B;,
c /4

B'=0
B,'=0

The frame S’ move relative to the frame S with a velocity v (=E,/Bs;<c) along the X axis.
We know the equation of motion for the particle in a uniform electric field B' along the

7’ axis.
12 12 2
X' \V Pox +p0y .n(C QB'

= s t'+a')
gB' Ein'
v2+ 12 2 ,
y'= \ Pox pOy COS(C qB t,+a,)
gB' Evin'

with v =E,/Bs<c.

0 0y
kin_) and pﬂo':(po',i%) is given

C

The Lorentz transformation between p ﬂo =(P,, I

by
Por'= 7(Po, _g Ekino)
p02': Poa
pos': Pos
Ekino': 7( Ekino - BCpy,)
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The required equations of motion for the particle in the frame S is obtained using the
Lorentz transformation.

X = y(X'+vt'
X, =y(X _Iﬁx4 ) _7$ )
X, = X,' y=y

z2=17
X, = X'
X, = 70 "%,) t=rExsy

19.  Doppler shift and aberration
19.1.

Y i
A A

&

p W
k,=—=(Kk,—
"= ( C)

where @ =ck

k WX, = k - r — wt =invariant under the Lorentz transformation.

or

kX, =kxcos8+kysing — ot
This should be equal to

k', X', =k'X'cos@'+k'y'sin 0'-a't'
Note that

X = y(X+vt")

t =yt x")

C

w =ck
w'=ck'
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Substituting these parameters into the invariant form, we have

t'(ck'—cky + kvy cos9) + X,(_va}/ +kycos@—k'cosd')+ y'(ksind —k'sind') =0

This should be satisfied for any t’, X, and y’.
ky(c—vcos®)=ck'
ky(cosd —%) =k'cosé'
ksin@ =Kk'sin &'

19.2. Doppler shift

Since k = 2—”,k': 2z
A A

2—”}/(1—!0058) :2_7z
A c

1

or

A

l':v—
y(1— ECOS 0)

19.3  Derivation of the formula using Mathematica
((Mathematica-14))

eqgl=(k (x Cos[O]+y Sin[O])- w t -kl (x1 Cos[61l]+yl
Sin[61])+ wl tl)/.{w-c k,wl-sc k1}//Simplify
-c k t+c k1l tl+k x Cos[6]-kl x1 Cos[61l]l+k y Sin[6] -kl
y1l Sin[e1]
\

rulel:{x-»x(x1+vﬂ),t->x(ﬂ+ axl),y-»yl}
vx1
2 )Y,Y%yl}
eg2=eql/.rulel//Simplify

ckltl-ck(t1+vé})y+k(t1V+xl)yCmﬂe]-

klx1Cosiel] + kylSinje] - klylSin[el]
Collect[eqg2, {x1,y1,t1}]
tl (ckl-cky +kvyCos[o]) +

x1 (- Kvy | ky Cos[e] - k1003[911) +y1 (kSin[e] - k1Sin[el)])

{X% (tBlv+Xx1l) v, t- (t1+
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rule2 = {k—)— kl—)—}
A

2
{k—> Sk TI}

eq3—(c kl-c k y+k v y Cos[®])/.rule2//Simplify
7 (C(x-y2Al) +Vy A1Cos[o])

aal

egh= - XYY, ky Cosie] - kLCostel] /. rule2 // Sinplify
27 (Vyal-cy 21Cos[o] + caCos[el])
- caal
eg5=k Sin[6]-k1 Sin[61]/.rule2//Simplify
27 Sin[o] 27rS|n[ 1)
A A1

eg3l=Solve [eqg3==0,A1]//Simplify
(1 e /)
Cy -VyCos|e]

Alre_1=2a1/.eq31[[11] /- {¥~ i} // Simplify
2
1-

2

c-vCos[e]
Longitudinal Doppler shift
A1 [0]

CcC-V
Series[A1[0],{v,0,4}]
A V2 v 3V -
"o 22 268 e Y
Transverse Doppler shift

A=

Serles[zl[%] , {V, 0, 4}]

v v 5

-2 200

2c2 ged oV
- MO, s/ es % /7 FullSinplify
1-8Cos| 2]

Plot [Evaluate[Table[f1,{3,0,0.99,0.05}11,{a,0,90},PlotsS
tyle—>Table [Hue[0.05
i],{1,0,20}1,Prolog-AbsoluteThickness[2],PlotRange—{{0,

,{0,7}},Background—GrayLevel [0.7] ,AxesLabel->{"6", "2
rn ]
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PN W A OO N

[0}

2 40 60 0
-Graphics-

19.4. longitudinal Doppler shift & =0 (red shift)
We suppose that a source is located at the origin of the reference frame S. An
observer moves relative to S at velocity V. So that he is at rest in S’.

If S’ moves toward S, rather than away from S, the signs in numerator and denominator
of the radical would have been unterchanged.

((The red shift)) Wikipedia

The light from distant stars and more distant galaxies is not featureless, but has
distinct spectral features characteristic of the atoms in the gases around the stars. When
these spectra are examined, they are found to be shifted toward the red end of the
spectrum. This shift is apparently a Doppler shift and indicates that essentially all of the
galaxies are moving away from us. Using the results from the nearer ones, it becomes
evident that the more distant galaxies are moving away from us faster. This is the kind of
result one would expect for an expanding universe.

The building up of methods for measuring distance to stars and galaxies led Hubble to
the fact that the red shift (recession speed) is proportional to distance. If this
proportionality (called Hubble's Law) holds true, it can be used as a distance measuring
tool itself.

The measured red shifts are usually stated in terms of a z parameter. The largest
measured z values are associated with the quasars.

((Mathematica-16))
Red shift: A'/A vs B =v/c
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Plot [eql, {B,0.4,0.99},
PlotStyle-{Hue[0],Thickness[0.015]},
Background-GrayLevel [0.7] ,AxesLabel-»{"B", "' /A"}]

-Graphics-
z-parameter = (A'-1)/A=(A"/A)-1

_1+\[1+B
1-5
Plot[z,{B,0.4,0.99},

PlotStyle-{Hue[0.5],Thickness[0.015]},
Background-GrayLevel [0.7] ,AxesLabel-»{"B","z"}]

-Graphics-

19.5. Transverse Doppler shift (6 = %)

19.6. Aberration

From these equations
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ky(1- %cos 0)=k'

ky(cos@ — %) =k'cosd'

we have
\'
cosfd ——
cosf'=
v
1——cosd
C

For low velocity we can neglect v>/c” and higher-order terms. Setting 8'= 6 + A&

cos(@+ Af)=cosd —ABsin O

and

Vv
cosf ——
V—Czcosﬂ—ﬂsinzé’

1-——cosé
C

Then we have
A@ = [sind

((Mathematica-17))
Aberration

eql=Cos [6+A8]
Cos [A6+0]
Series[eql, {A6,0,1}]
Cos[o] - Sin[e] a6 + 0[16]2
eqll=Cos[©] -sin[6] A6
Cos [6] -A6 Sin[6O]

Cosle] -8B

2= -0 TP

S = 1 s Coste]
-B +Cos|o]
1-3Cos|e]

Series[eq2,{,0,1}]
Cos[o] + (-1+Cos[6]?) B +0[B
eq22 = Cos[e] + (-1+Cos[e]?)
Cos[o] + B (-1+Cos[6]?)
eg3=eqll==eqg22

Cos[o] - n6Sin[e] - Cos[e] + B (-1 + Cos[6]2)
eg3l=Solvel[eq3,A6]//Simplify

12
B
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Gereral ::spelll : Possible spelling error = new
symol name “eqBl " is similar to existing symbol “eql'. More.
{{n6-B sin[6]}}
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Appendix
A-1  Capacitance

The capacitor moves at the constant speed in the X direction.
In the S’ system

E,=%0
80

E,'=0

E/'=0

From the Lorentz transformation, the electric field and the magnetic field in the S system
are given by

E =E'=0
' ' U O-O
E, =y(E,'+cfB,") = )&,'=y—

&y
E,=y(E,'—¢c/B,")=0
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B,=B'=0

B, :7(82'_§E3'):0

O,
8, =@ +LEN =y LE =y L0

< c &

Since E; is expressed by

£ - ,%

&y &)

or
o =y0o,
A-2  Faraday’s law
1. A conducting rod moving through a uniform magnetic field

We consider a metal rod (conductor) which moves at a constant velocity (V) in a
direction perpendicular to its length. Pervading the space through which the rod moves
there is a uniform magnetic field B (//z) constant in time. There is no electric field in the
reference frame F.

The rod contains charged particles that will move if a force is applied to them. Any
charged that is carried along with the rod, such as the particle of charge g moves through
the magnetic field B and thus experience a force.

f=q(vxB)

The direction of the force is dependent on the sign of the charge g.

When the rod is moving at constant speed and things have settled to a steady state, the
force f must be balanced, at every point inside the rod, by an equal and opposite force.
This can only arise from an electric field in the rod. The electric field develops in the
following way. The force f pushes negative charges toward one end of the rod, leaving
the other end positively charges. This goes on until these separated charges themselves
cause an electric field E such that, everywhere in the interior of the rod,

qgE+f =0,

Then the motion of charge relative to the rod ceases. This charge distribution causes an
electric field outside the rod, as well as inside. Inside the rod, there has developed an
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electric field E=vxB , exerting a force qE which just balances the force
Z

I 3

¥ =

q(vxB).x

Let us observe the system from a frame F’ that moves with the rod. What is the
magnetic field B’ and the electric field E’? Note that there is no electric field (E = 0) in
the frame F (B # 0). The E’ and B’ in the frame F’ are related to those in the frame F as

EIVZEIZO BlzBlzo
Er(E-ofB)=—pB . B/=y(B.+LE)=B -0

Es':7(E3+CﬂBz)=W82:O B
B/~ /(B,~LE) =B,

or
E'=y(vxB)=vxB'

1

where y = ———
V1-v?/c?

The electric field E’ has only a component along the y’ axis (the same as Yy xis). The
presence of the magnetic field B’ has no influence on the static charge distribution.

~ 1 for v<<c. The magnetic field B’ (= yB) is almost equal to B.
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2. A loop moving through a nonuniform magnetic field
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F denotes the force which acts on a charge q that rides along with the loop. We
evaluate the line integral of F, taken around the whole loop. On the two sides of the loop
which lie parallel to the direction of motion, F is perpendicular to the path element ds. So
there is no contribution to the line integral. Taking account of the contributions from the
other two sides, each of length w, we have
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W, = §F-ds = fq(vxB)-ds = qv(B, - B,)w
where

F,=a(vxB,)

F,=q(vxBy,)
From the definition, we get

W, =V =qfE-ds =qu(B, - B,)w
or

V =§E-ds =v(B, - B,)w

The electromotive force V is related in a very simple way to the rate of change of
magnetic flux through the loop. The magnetic flux through a loop is the surface integral
of B over a surface which has the loop for its boundary.

A® = B,vwAt — B,vwAt = —(B, — B, )vwAt

or

V=§E-ds=§(vXE)-da=——=—— B-da

= (Ba - Bb)VW

We now consider the frame F’ attached to the loop.
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From the Lorentz transformation of E and B,
EIVZEIZO BlzBlzo
E,'= /(E, ~vB,) =78, B~ 7(B, + L E) =18, =0

E,'=y(E,+VvB,)=wB, =0 B
B,'=y(B,—=—E,) =B,
C

we have
Ea': _WBa ~ _VBa Eb': _WBb = _VBb
Ba':yBa ~ Ba , Bb': 7’Bb ~ Bb

2

For observers in the frame S’, E,” and E,’ are genuine electric field. It is not an
electrostatic field. The integral of E’ around the loop, which is the electromotive force V,
is given by

V'='§E-ds =vB,w—vB,w=vw(B, - B,)

which is the same as that obtained for the frame S.
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