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This chapter (7S) is written as a supplement to Chapter 7 (the original note on the Davisson-

Germer experiment). I taught the Phys.323 (Modern Physics) for two years (Fall 2011 and Fall 

2012). When I taught the concept on the Davisson-Germer experiment, I tried to understand the 

physical meaning of this experiment using the standard modern physics textbooks. However, I 

could not succeed in giving any reasonable explanation for the essential points of the Davisson-

Germer experiment. After I finished teaching this course, I continue to consider the way how to 

explain the experiment. Finally, I succeeded in getting a proper understanding for the experiment, 

using the concept of the Ewald sphere (which is used to explain the Bragg reflections) for the two-

dimensional Bragg reflection. The method of Ewald sphere will be taught in detail in the Phys.472 

(Solid State Physics, which will be taught after Phys.323). In spite of the fact that this method is 

not taught in Phys.323, I will put my note here (as Chapter 7S). The same note was also published 

in the Los Alamos Archive (July 2013) as a title, “a proper understanding of the Davisson-Germer 

experiments for undergraduate modern course.” Although the original note (Chapter 7S) is far 

from the completeness, I will not remove Chapter 7 from the lecture notes. It may be useful for the 

students to try to understand the experiment by themselves, based on the comparison between the 

original note (Chapter 7) and the supplement (Chapter 7S). 

 

______________________________________________________________________________ 

((Additional Note)) November 27, 2020 

 

When I taught on the topics of Davisson-Germer experiment in Modern Physics (Phys.323, 

Fall, 2011) at SUNY at Binghamton, one of my students asked me, what kind of lattice constants 

he has to use in solving the homework problem related to the Davisson-Germer experiment. He 

was confused with the use of lattice constant of the crystal between the interplanar lattice constant 

and the intraplanar interaction. I realized that this problem is closely related to the nature of the 

diffraction in the Davisson-Germer experiment. 

Recently I found very interesting figures in a book; H.E. White, Introduction to Atomic and 

Nuclear Physics (D. Van Nostrand Co., 1964). In this book, the Davisson-Germer experiment was 

clearly explained by the diffraction grating (2D diffraction), where the intraplanar constant is 2.15 

Å for Ni (111) plane. Recently, I also checked the articles (including videos) in the web site, how 

this experiment can be explained. I was surprising to notice that the experiment is explained by 

the 3D Bragg diffraction, where electrons are diffracted by many layers of atoms. I also checked 

many standard textbooks of modern physics and found the explanation that the 3D Bragg reflection 

occurs in the Davisson-Germer experiment. The interplanar distance of the crystal is related to the 

Bragg condition for the 3D scattering, while the intraplane distance is related to the diffraction 



grating. For the 3D diffraction, my students of Phys.323 (Modern Physics) had to use the 

interplanar constant to get the right answer for their home works and exams, rather than the 

intraplanar lattice constant. 

 

 
 

Fig.1 The Davisson-Germer experiment. Electrons striking the surface layers of a crystal 

are diffracted at different angles just as if they were waves with a very short 

wavelength. [H.E. White, Introduction to Atomic and Nuclear Physics (D. Van 

Nostrand Co., 1964)]. 

 



 
 

Fig.2 Diagram of electron diffraction from the surface layer of a nickel crystal. The 

regular spacing of the atoms makes the crystal act like a diffraction grating. [H.E. 

White, Introduction to Atomic and Nuclear Physics (D. Van Nostrand Co., 1964)]. 

 

The question is whether the Davisson Germer experiment is 2D diffraction (diffraction grating) 

or 3D diffraction. We need to notice that the nature of electron diffraction is rather different from 

those of x-ray photon and neutron. An electrons has an electric charge (-e) unlike photon and 

neutron. The penetration depth d is very different for these rays. X-rays are used to determine the 

3D structure of the bulk, because the d = 1000 – 10000 Å (at approximately 1.5 keV). On the other 

hand, electrons scatter at valence and core electrons of the atoms of target crystal, and excite bulk 

and surface plasmons. These are inelastic interactions with large energy transfer with almost no 

momentum transfer. Such electrons do not contribute to the interference. For elastically scattered 

electrons, on the other hand, the mean free path (or penetration depth) is very short, and the 

information is limited to a surface region. For electron energies 30 – 300 eV the mean free path is 

limited to atomic distances. There is no energy transfer, but considerable momentum transfer, 

leading to the interference pattern. 

Suppose that the penetration depth of electrons can be roughly estimated as 

 

1
d


 , 

 

where m is the mass of electron,  

 

2mW
 ≃

ℏ
. 

 



Using the work function W as 5.01 eV of Nickel, the value of d is estimated as 0.87Å. So that the 

electron waves are used to determine the 2D structure of the crystals, if the surface of the bulk 

crystals is flat and clean like Ni (111) surface used by Davisson and Germer. Note that the 

wavelength of the electron can be determined by 

 

12.2

( )E eV
   (Å). 

 

Using the de Broglie relation. When 100E   eV, the wavelength is 1.22   Å. 

What is the difference between 3D diffraction for the 3D crystals and diffraction grating for 
the 2D diffraction on the surface of crystals? Essentially, we use similar Bragg conditions for both 
cases. However, we need to use the intraplanar lattice constant of the monolayer nearest to the 

surface for the diffraction grating. On the other hand, we need to use the interplanar lattice constant 
of the 3D bulk systems. It is significant to take into account the Ewald construction for the Bragg 
condition. For the 3D systems, one find the Bragg points in the reciprocal space, while for the 2D 
system, one find the Bragg ridges (or rods), which forms lines normal to the 2D reciprocal lattice 
plane, passing through the 2D Bragg points in the reciprocal lattice plane. Note that the condition 
for the 3D Bragg reflections is much restricted compared to that for the 2D Bragg reflections. 
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The physical interpretation for the Davisson-Germer experiments on nickel (Ni) single crystals
[(111), (100), and (110) surfaces] is presented in terms of two-dimensional (2D) Bragg scattering.
The Ni surface acts as a reflective diffraction grating when the incident electron beams hits the
surface. The 2D Bragg reflection occurs when the Ewald sphere intersects the Bragg rods arising
from the two-dimension character of the system. Such a concept is essential to proper understanding
of the Davisson-Germer experiment for undergraduate modern physics course

I. INTRODUCTION

The observation of diffraction and interference of elec-
tron waves would provide the crucial test of the exis-
tence of wave nature of electrons. This observation was
first seen in 1927 by C. J. Davisson and L. H. Germer.1

They studied electron scattering from a target consist-
ing of a single crystal of nickel (Ni) and investigated this
phenomenon extensively. Electrons from an electron gun
are directed at a crystal and detected at some angle that
can be varied (see Fig.1). For a typical pattern observed,
there is a strong scattering maximum at an angle of 50◦.
The angle for maximum scattering of waves from a crystal
depends on the wavelength of the waves and the spacing
of the atoms in the crystal. Using the known spacing
of atoms in their crystal, they calculated the wavelength
that could produce such a maximum and found that it
agreed with the de Broglie’s hypothesis for the electron
energy they were using. By varying the energy of the inci-
dent electrons, they could vary the electron wavelengths
and produce maxima and minima at different locations
in the diffraction patterns. In all cases, the measured
wavelengths agreed with de Broglie’s hypothesis.

The Davisson-Germer experiment itself is an estab-
lished experiment.1–6 There is no controversy for them.
How about the physical interpretation? One can see the
description of the experiments and its physical interpre-
tation in any standard textbook of the modern physics,
which is one of the required classes for the physics ma-
jors (undergraduate) in U.S.A. Nevertheless, students as
well as instructors in this course may have some diffi-
culty in understanding the underlying physics, since the
descriptions of the experiments are different depending
on textbooks and are not always specific.7–12

As far as we know, proper understanding has not been
achieved fully so far. In some textbooks,9,10,12 the Ni
layers are thought to act as a reflective diffraction grat-
ing. When electrons are scattered by the Ni (111) surface
(single crystal), the electrons strongly interact with elec-
trons inside the system. Thus electrons are scattered by
a Ni single layer. The Ni (111) surface is just the two-
dimensional layer for electrons. In other textbooks,7,8,11

electrons are scattered by Ni layers which act as a bulk
system. The 3D character of the scattering of electrons

FIG. 1. Constructive interference of electron waves scattered
from a single layer of Ni atoms (typically Ni (111) plane) at
an angle φ. ki is wave vector of incident electron beam and
kf is wave vector of outgoing electron beam.

appears in the form of Bragg points in the reciprocal lat-
tice space.13–18 The 3D Bragg reflection can occur when
the Bragg points lie on the surface of Ewald sphere, like
the x-ray diffraction.

Here we will show that the Ni layers act as a reflective
diffraction grating. The 2D scattering of electrons on the
Ni (111), Ni(100), and Ni(110) surfaces will be discussed
in terms of the concept of the Bragg rod (or Bragg ridge)
which intersects the surcae of the Ewald sphere.13 We
will show that the experimental results1–5 obtained by
Davisson and Germer can be well explained in terms of
this model.

II. MODEL: EWALD SPHERE AND 2D BRAGG
SCATTERING

In 1925, Davisson and Germer investigated the
properties of Ni metallic surfaces by scattering elec-
trons. Their experiments (Davisson-Germer experiment)
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FIG. 2. Ewald sphere for the Bragg reflection for the 2D
system. The wavevector ki is drawn in the direction of the
incident electron beam. G0 = G⊥, which is the inplane re-
ciprocal lattice vector, parallel to the surface. Ewald sphere
(radius (kf = ki = 2π

λrel
) is centered at the point O. The

point O1 is the origin of the reciprocal lattice vectors. The
Bragg reflection occurs when the surface of the Ewald sphere
intersects the Bragg rod originated from the nature of the
2D system: φ = 50◦. K = 54 eV. λrel = 1.66891Å for the
Ni(111) plane. The lattice constant of conventional fcc Ni is
a = 3.52Å.

FIG. 3. Ewald sphere for the two-dimensional layer with the
radius kf = ki = 2π

λrel
. The red lines are denoted by the

Bragg rods arisen from the character of the 2D system. The
Bragg reflection occurs when the wave vector of the reflected
wave is on the point [denoted by the blue points, which are
not the Bragg points], where the Ewald sphere intersects the
Bragg rod. G0 = G⊥.

demonstrates the validity of de Broglie’s postulate be-
cause it can only be explained as a constructive interfer-
ence of waves scattered by the periodic arrangement of
the atoms of the crystal. The Bragg law for the diffrac-
tion had been applied to the x-ray diffraction, but this
was first application to the electron waves.

We now consider the Bragg reflections in the 2D sys-
tem. The Bragg reflections appear along the reciprocal
rod, which is described by G⊥ , where G⊥ (= G0) is the
in-plane reciprocal lattice vector parallel to the surface.
The incident electron wave (ki = k , k = 2π/λrel) is re-
flected by the surface of the 2D system. kf (= k′) is the
wavevector of the out-going electron wave (k′ = 2π/λrel).
Here we use the notation λrel as the wavelength, instead
of the conventional notation λ. The Ewald sphere is
formed of the sphere with the radius of k (= k′). The
scattering vector Q is defined by

Q = k′ − k, (1)

and O1 is the origin of the reciprocal lattice space. The
2D system is located at the origin of the real space O.
The direction normal to the surface of the system is anti-
parallel to the direction of the incident electron wave.
Since the system is two-dimensional, the reciprocal lat-
tice space is formed of Bragg rods. The Bragg reflections
occur when the Bragg rods intersect the surface of the
Ewald sphere.15,16

Because of the 2D system, the Bragg points of the 3D
system are changed into the Bragg rods. Then the Bragg
condition occurs under the condition (see Fig.3),

k′ sinφ = G⊥ = G0, (2)

where

k = k′ =
2π

λrel
. (3)

The scattering angle 2θ is related to the angle φ as

φ = π − 2θ. (4)

In the electron diffraction experiment, we usually need to
use the wavelength ( λrel), which is taken into account
of the special relativity,7–12

sin(π − 2θ) =
G0

k′
=
G0

2π
λrel, (5)

or

sin 2θ =
G0

2π
λrel, (6)

where λrel is the wavelength,

λrel =
hc/E0√

(K/E0)(K/E0 + 2)
, (7)

where h is the Planck’s constant and c is the velocity
of light, K (in the units of eV) is the kinetic energy of
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electron. E0 (= mc2) is the rest energy. m is the rest
mass of electron. In the non-relativistic limit, we have

λclassical =
12.2643√
K(eV)

Å, (8)

in the unit of Å. When K = 54 eV, λrel is calculated as
λrel = 1.66891Å.

Suppose that Ni (111) plane behaves like a three-
dimensional system. The 3D Bragg reflection occurs only
if the Bragg condition

Q = kf − ki = G, (9)

is satisfied, where Q is the scattering vector and G is
the reciprocal lattice vectors for the 3D system. In the
experimental configuration as shown in Fig.2. G is one of
the reciprocal lattice vectors for the fcc Ni, and appears
in the form of Bragg point. This Bragg point should be
located on the surface of the Ewald sphere with radius
(kf = ki = 2π/λrel) centered at the point O (see Fig.2).
No existence of such a Bragg point on the Ewald sphere
indicates that the 3D Bragg scattering does not occur in
the present situation (Fig.2).

III. FUNDAMENTAL

A. Reciprocal lattice for the primitive cell for fcc

The primitive cell by definition has only one lattice
point. The primitive translation vectors of the fcc lattice
are expressed by

a1 =
1

2
a(0, 1, 1),a2 =

1

2
a(1, 0, 1),a3 =

1

2
a(1, 1, 0), (10)

where there is one lattice point (or atom) per this primi-
tive cell and a is the lattice constant for the conventional
cubic cell (a = 3.52Å for fcc Ni).13 The corresponding
reciprocal lattice vectors for the primitive cell are given
by

b1 =
2π(a2 × a3)

a1 · (a2 × a3)
=

2π

a
(−1, 1, 1), (11a)

b2 =
2π(a3 × a1)

a1 · (a2 × a3)
=

2π

a
(1,−1, 1), (11b)

b3 =
2π(a1 × a2)

a1 · (a2 × a3)
=

2π

a
(1, 1,−1). (11c)

The reciprocal lattice vector is described by

G = g1b1 + g2b2 + g3b3, (11d)

where g1, g2, and g3 are integers.

B. The reciprocal lattice for the conventional cell
for fcc

The translation vectors of the conventional unit cell
(cubic) are expressed by

ax = a(1, 0, 0),ay = a(0, 1, 0),az = a(0, 0, 1), (12)

where there are two atoms per this conventional unit
cell.13 The reciprocal lattice vectors are defined by

bx =
2π(ay × az)

ax · (ay × az)
=

2π

a
(1, 0, 0), (13a)

by =
2π(az × ax)

ax · (ay × az)
=

2π

a
(0, 1, 0), (13b)

bz =
2π(ax × ay)

ax · (ay × az)
=

2π

a
(0, 0, 1), (13c)

In general, the reciprocal lattice vector is given by

G = gxbx + gyby + gzbz =
2π

a
(gx, gy, gz), (13d)

with

gx = −g1 + g2 + g3, gx = g1 − g2 + g3, gx = g1 + g2 − g3.
(14)

There are relations between (gx, gy, gz) and (g1, g2, g3).
Note that all indices of (gx, gy, gz) are odd or even. There
is a selection rule for the indices (gx, gy, gz).

IV. STRUCTURE FACTOR FOR IDEAL 2D
AND 3D SYSTEMS: BRAGG RODS AND BRAGG

POINTS

The structure factor SG for the 2D system15,16 is given
by

SG =

∫
n(r2D)e−iG·r2Ddr2D

=

∫ ∫
n(x, y)e−i(Gxx+Gyy)dxdy, (15)

where

r2D = xex + yey = (x, y, 0).

Then SG depends only on Gx and Gy, forming the Bragg
rod (or Bragg ridge) in the reciprocal lattice space.

The structure factor SG for the 3D system13 is given
by

SG =

∫
n(r3D)e−iG·r3Ddr3D

=

∫ ∫ ∫
n(x, y, z)e−i(Gxx+Gyy+Gzz)dxdydz,(16)

where r3D is the position vectorof each atom,

r3D = xex + yey + zez = (x, y, z).
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FIG. 4. The reciprocal lattice vectors which is viewed from
the direction of (b1+b2+b3 = bx+by+bz) for Ni(111) plane.
Note that b1, b2 and b3 are the reciprocal lattice vectors for
the primitive cell where one atom exists, and bx, by, and bz
are the reciprocal lattice vectors for the conventional cell. 2D
Reciprocal lattice plane, which is viewed from the direction of
(b1 +b2 +b3 = bx +by +bz). The green lines form a Bragg
rod along the direction of (b1 + b2 + b3 = bx + by + bz),
arising from the 2D character of the system. The red circle
shows the 3D Bragg point of fcc Ni. The blue circle is not the
3D Bragg point and lies on the 2D Bragg rods.

Then SG depends only on Gx, Gy, and Gz, which leads
to the Bragg points.

Let nj(r−rj) be defined by the contribution of atom j
to the electron concentration. The electron concentration
is expressed by

n(r) =

s∑
j=1

nj(r− rj), (17)

over the s atoms of the basis. Then we have

SG =

∫
Vcell

n(r)e−iG·rdr =
∑
j

∫
Vcell

nj(r− rj)e
−iG·rdr,

(18)
or

SG =
∑
j

e−iG·rj
∫
Vcell

nj(ρ)e−iG·ρdρ. (19)

V. DISCUSSION

A. fcc Ni (111) plane

Here we discuss the experimental results obtained by
Davisson and Germer in terms of the model described in
the Section II.

FIG. 5. 2D reciprocal lattice plane formed by Bragg rods,
where the green arrows are the Bragg rod along the from the
direction of (b+b2+b3 = bx+by+bz) [Ni(111) plane]. Bragg
rod forming along the direction (b1+b2+b3 = bx+by+bz).
The red circle denotes the 3D Bragg point of fcc Ni.

Here we note that

b1 =
2π

a
(−1, 1, 1),b2 =

2π

a
(1,−1, 1),b3 =

2π

a
(1, 1,−1),

(20)
with

b1 + b2 + b3 =
2π

a
(1, 1, 1). (21)

The unit vector along the direction of the vector
−−→
OO′ is

given by

n̂(111) =

−−→
OO′

OO′
=

1√
3

(1, 1, 1). (22)

The component of b1 parallel to the unit vector n̂(111)
is

b1‖ = [n̂(111) · b1]n̂(111) =
2π

3a
(1, 1, 1). (23)

Similarly, we have

b2‖ = b3‖ =
2π

3a
(1, 1, 1), (24)

which is equal to

−−→
OO′ =

b1 + b2 + b3

3
. (25)

The component of b1, b2, and b3, perpendicular to the
unit vector n̂(111) are

b1⊥ = b1 − b1‖ =
4π

3a
(−2, 1, 1), (26a)

b2⊥ = b2 − b2‖ =
4π

3a
(1,−2, 1), (26b)

b3⊥ = b3 − b3‖ =
4π

3a
(1, 1,−2). (26c)
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Then we get

b1⊥ + b2⊥ = −b3⊥ =
4π

3a
(−1,−1, 2), (27a)

b2⊥ + b3⊥ = −b1⊥ =
4π

3a
(2,−1,−1), (27b)

b3⊥ + b1⊥ = −b2⊥ =
4π

3a
(−1, 2,−1). (27c)

The 2D reciprocal lattice vector formed by Bragg rods
(b1⊥, b2⊥, b3⊥, −b1⊥, −b2⊥, −b3⊥) is shown by Figs.4
and 5, where the magnitude of the reciprocal lattice vec-
tor is given by∣∣∣−−→O′A∣∣∣ = G0 = |b1⊥| =

4π√
3a0

, (28)

where a0 = a/
√

2. Note that G0 can be also obtained as

G0 = b1 −
1

3
(b1 + b2 + b3) =

4π

3a
(−2, 1, 1). (29)

Figure 6 shows the 2D reciprocal lattice vectors formed
by the Bragg rods with the six-fold symmetry. This
implies that the corresponding 2D triangular lattice is
formed in the real space. The direction of the funda-
mental lattice vector a0 is rotated by 30◦ with respect to
the direction of the fundamental reciprocal lattice vector
G0,13 where

a0 ·G0 = 2π. (30)

Using the geometry as shown in Fig.3, the Bragg condi-
tion can be obtained as

sin(2θ) = sinφ = nG0
λrel
2π

= n
λrel
a

√
8

3
, (31)

where n = 1, 2, , 3,..... and G0 is the fundamental recip-
rocal lattice (see Fig.6). Note that n =

√
3 and 2

√
3 are

also possible for
√

3G0 and 2
√

3G0, respectively. Here
we only consider the case of integer n. We introduce the
length deq(111) such that

deq(111) sinφ = nλrel, (32)

where

deq(111) = a

√
3

8
=

√
6a

4
= 0.6124× 3.52Å = 2.1556Å.

(33)
Equation (32) with n = 1 corresponds to the expression
for the reflective diffraction grating, where

deq(111) sinφ = λrel, (34)

for the Ni(111) plane. This value of deq agrees well with
that reported by Davisson and Germer.1,2 We note that
the left side of Eq.(34) is the path difference between two
adjacent rays for the reflective diffraction grating (see
Fig.7). When K = 54 eV, the wavelength can be calcu-
lated as λrel = 1.6689Å, using Eq.(7). From the result

FIG. 6. The 2D reciprocal lattice vector formed by Bragg
rods in the case of corresponding to the Ni (111) plane. The
corresponding 2D lattice vectors in the real space are also
shown. The axis of a0 is rotated by 30◦ with respect to the
axis of the reciprocal lattice G0 ·θ0 = 30◦. G0 ·a0 = 2π. G0 =
4π√
3a0

= 2.915Å−1. a0 = a√
2

= 2.489Å. deq = a0√
2

= a
√

3
8
. deq

(= 2.1556Å) is the distance such that Ni (111) plane acts as
a reflective diffraction grating,2 deq sinφ = λrel.

FIG. 7. Reflective diffraction grating. deq(111) = 2.15Å for
Ni(111) plane.2 φ = 50.74◦. a = 3.52Å for Ni. The blue
points denote Ni atoms on the 2D layer.

of the Davisson-Germer experiment,1,2 φ = 50.74◦. we
get λexp = deq(111) sin(φ) = 1.6684Å. This wavelength
is exactly the same as that calculated based on the de
Broglie hypothesis.

Figure 8 shows the plot of the angle φ as a function
of the kinetic energy K, which is expressed by Eq.(31),
where n = 1, 2, and 3. In Fig.8, we also plot the experi-
mental data obtained by Davisson and Germer (denoted
by green points). We find that all the data lie well on the
predicted relation between φ and K for n = 1, 2, and 3.

The six-fold symmetry of the 2D reciprocal lattice vec-
tors was experimentally confirmed by Davisson and Ger-
mer for the Ni(111) plane [K = 54 eV and φ = 50◦].1,2

The rotation of the Ni sheet around the (111) direction
leads to nealy six-fold symmetry of the intensity as a
function of azimuthal for latitude. Note that the intensi-
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FIG. 8. The angle φ vs the kinetic energy K for the Ni (111)
plane. The data denoted by points (green) were reported by
Davisson and Germer.1,2 The red solid line for G0 (n = 1).
The blue dotted line for 2G0 (n = 2). The purple dashed line
for 3G0 (n = 3), where G0 = 4π√

3a

√
2 = 2.9149Å−1.

ties at Q⊥ = b1⊥, b2⊥, and b3⊥ (denoted as (111) plane
by Davissson and Germer)1 are stronger than those from
Q⊥ = (b1 + b2)⊥, (b2 + b3)⊥, and (b3 + b1)⊥ (denoted
as (100) plane by Davisson and Germer).1 We also note
that when K = 65 eV, Davisson and Germer observed
φ = 44◦, where λrel can be evaluated as λrel = 1.5212Å,
using Eq.(34) with deq(111) by Eq.(33).1 In this case, the
intensities at Q⊥ = b1⊥, b2⊥, and b3⊥ are much weaker
than those from Q⊥ = (b1 + b2)⊥, (b2 + b3)⊥, and
(b3 + b1)⊥. In other words, the intensity vs azimuthal
pattern is strongly dependent of the kinetic energy of
electrons. For the ideal case of scattering from a true
2D network of atoms, the intensity vs azimuthal should
show the perfect six-fold symmetry. The intensity is the
same for Q⊥ = b1⊥, b2⊥, b3⊥, (b1 + b2)⊥, (b2 + b3)⊥,
and (b3 + b1)⊥. In the Davisson-Germer experiment,1

it may be possible that the primary electrons penetrate
several atomic layers into the system. The deeper they
penetrate, the more scattering events in the direction per-
pendicular to the surface, enhancing the contribution of
the 3D scattering to experimental results. This leads to
the change of the intensity of the Bragg reflections as
a function of azimuthal, in comparison with the case of
pure 2D scattering.16

B. Ni (100) plane

The unit vector along the (1,0,0) direction is defined
by

n̂(100) = (1, 0, 0). (35)

The components of b1 and b2, parallel to the unit vector
n̂(100) are

b1‖ = [n̂(100) · b1]n̂(100) =
2π

a
(−1, 0, 0), (36a)

b2‖ = [n̂(100) · b2]n̂(100) =
2π

a
(1, 0, 0). (36b)

FIG. 9. Reciprocal lattice plane which is viewed from the
bx-direction, where bx is the reciprocal lattice vector of the
conventional cubic lattice. Ni(100) plane. The red circle de-
notes the 3D Bragg points for fcc Ni.

FIG. 10. The 2D reciprocal lattice vector formed by Bragg
rods in the case of corresponding to the Ni (100) plane. b1⊥,
b2⊥ are the reciprocal lattice vectors, which is viewed from
the bx-direction, where bx is the reciprocal lattice vector of
the conventional cell. n̂(100) = (1, 0, 0).

Then the components of b1 and b2 perpendicular to the
unit vector n̂(100) are

b1⊥ = b1 − b1‖ =
2π

a
(0,−1,−1), (36c)

b2⊥ = b2 − b2‖ =
2π

a
(0,−1, 1). (36d)

Then we get the 2D reciprocal lattice vectors formed by
Bragg rods, having the four-fold symmetry around the
vector n̂(100),

|b1⊥| = |b2⊥| = G0 =
2π

a

√
2. (37)
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FIG. 11. The angle φ vs the kinetic energy K for the Ni (100)
plane. The data denoted by points (green) were reported by
Davisson and Germer.1,2 The red solid line for G0. The blue
dotted line for 2G0. The purple dashed line for 3G0, where
G0 = 2π

a

√
2 = 2.5244Å−1.

Using the geometry as shown in Fig.10, the Bragg con-
dition can be expressed in terms of

sin(2θ) = sinφ = nG0
λrel
2π

=
nλrel
deq

, (38)

for the Ni(100) plane, where deq(100) is the length of
spacing for the reflective diffraction grating for Ni(100)
plane deq(100) = a√

2
= 2.517Å.

Figure 11 shows the plot of the angle φ as a function
of the kinetic energy K, which is expressed by Eq.(38),
where n = 1, 2, and 3. In Fig.11, we also plot the experi-
mental data obtained by Davisson and Germer (denoted
by green points).1,2 We find that all the data fall fairly
well on the predicted relation between φ and K for n =
1, 2, and 3, in particular for n = 1. When K = 190 eV,
the wavelength can be calculated as λrel = 0.88966Å,
using Eq.(7). From the result of the Davisson-Germer
experiment, φ = 20◦,1,2 on the other hand, we get
λexp = deq(100) sinφ = 0.86087Å for the Ni(100) plane.
This wavelength is almost the same as that calculated
based on the de Broglie’s hypothesis.

C. Ni (110) plane

The unit vector along the (110) direction is defined by

n̂(110) =
1√
2

(1, 1, 0). (39)

The components of b1, b1, and b1, parallel to the unit
vector n̂(110) are

b1‖ = [n̂(110) · b1]n̂(110) = (0, 0, 0), (40a)

b2‖ = [n̂(110) · b2]n̂(110) = (0, 0, 0), (40b)

b3‖ = [n̂(110) · b3]n̂(110) =
2π

a
(1, 1, 0). (40c)

FIG. 12. Reciprocal lattice plane which is viewed from the
bx + by direction, where bx and by are the reciprocal lattice
vector of the conventional fcc lattice. Ni(110) plane. The red
circle denotes the 3D Bragg point. The blue circle does not
denote the 3D Bragg point and lies on the 2D Bragg rod.

FIG. 13. The 2D reciprocal lattice vector formed by Bragg
rods in the case of corresponding to the Ni (110) plane. b1⊥,
b2⊥ are the reciprocal lattice vectors, which is viewed from
the n̂(110) = 1√

2
(1, 1, 0) direction.

The components of b1, b2, and b3, perpendicular to the
unit vector n̂(110) are

b1⊥ = b1 − b1‖ =
2π

a
(−1, 1, 1), (40d)

b2⊥ = b2 − b2‖ =
2π

a
(1,−1, 1), (40e)

b3⊥ = b3 − b3‖ =
2π

a
(0, 0,−1). (40f)

Then we get the magnitude of the 2D reciprocal lattice
vector (rectangular lattice)

G0 =
|b1⊥ − b2⊥|

2
=

2π

a

√
2, G1 = |b3⊥| =

2π

a
. (41)

Using the geometry as shown in Fig.13, the Bragg con-
ditions for nG0 and nG1 can be expressed by

sin(2θ) = sinφ = nG0
λrel
2π

= n
λrel
a

√
2 =

nλrel
d1

, (42)
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FIG. 14. The angle φ vs the kinetic energy K for the Ni (110)
plane. The data denoted by points (green) were reported by

Davisson and Germer.1,2 sinφ = nλrel
d1

[Eq.(42)] with n =

2, red solid line). sinφ = nλrel
d2

(n = 2, blue dotted line).

sinφ = nλrel
d2

(n = 3, purple dashed line).

and

sin(2θ) = sinφ = nG1
λrel
2π

= n
λrel
a

=
nλrel
d2

, (43)

respectively, where d1 = a√
2

= 2.517Å and d2 = a =

3.52Å. The lengths d0 and d1 are equivalent spacings of
the 2D rectangular lattice (real space). Figure 14 shows
the plot of the angle φ as a function of the kinetic energy
K, which is expressed by Eq.(42), where n = 1, 2, and 3.
In Fig.14, we also plot the experimental data obtained

by Davisson and Germer (denoted by green points).1,2

We find that all the data lie fairly well on the predicted
relation given by Eq.(42) between φ and K for sinφ =

nλrel

d1
with n = 2.

When K = 143 eV, the wavelength can be calculated
as λrel = 1.0255Å, using Eq.(7). From the result of the
Davisson-Germer experiment, φ = 56◦, on the other side,
we get

λexp =
d1
2

sinφ =
a

2
√

2
sinφ = 1.0317Å, (44)

using a = 3.52Å. This wavelength is almost the same
as that calculated based on the de Broglie’s hypothesis.
We note that the d-spacing deq(110) for the reflective

diffraction grating is deq(110) = a
2
√
2

= 1.2445Å, for the

Ni(110) plane. This value of deq(110) agrees well with
that reported by Davisson and Germer.2

VI. CONCLUSION

The essential feature of the Davisson-Germer exper-
iment for the Ni(111), Ni(100), and Ni(110) planes is
that the 2D Bragg scattering occurs. The Bragg rods are
formed in the reciprocal lattice space. The component of
the scattering vector Q parallel to the surface is equal to
the 2D surface reciprocal lattice vector of the Bragg rods.
The electron beam is reflected from a single layer, lead-
ing to the eflective diffraction grating with the d-spacing
deq.
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