Angular momentum of photon
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: August 25, 2013)

1. Angular momentum

The orbital angular momentum is defined as

\[
\hat{L} = \hat{r} \times \hat{p}
\]

\[
\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x
\]

\[
\hat{L}_x = \hat{y}\hat{p}_z - \hat{z}\hat{p}_y
\]

\[
\hat{L}_y = \hat{z}\hat{p}_x - \hat{x}\hat{p}_z
\]

We consider the commutation relation:

\[
\hat{L} \times \hat{L} = i\hbar \hat{L}
\]

\[
[\hat{L}_y, \hat{L}_z] = i\hbar\hat{L}_x,
\]

\[
[\hat{L}_z, \hat{L}_x] = i\hbar\hat{L}_y,
\]

\[
[\hat{L}_x, \hat{L}_y] = i\hbar\hat{L}_z
\]

\[
[\hat{L}_z, \hat{z}] = [\hat{x}\hat{p}_y - \hat{y}\hat{p}_x, \hat{z}] = 0,
\]

\[
[\hat{L}_z, \hat{x}] = [\hat{x}\hat{p}_y - \hat{y}\hat{p}_x, \hat{x}] = -[\hat{y}\hat{p}_x, \hat{x}] = -\hat{y}[\hat{p}_x, \hat{x}] = i\hbar\hat{y}
\]

\[
[\hat{L}_z, \hat{y}] = [\hat{x}\hat{p}_y - \hat{y}\hat{p}_x, \hat{y}] = [\hat{x}\hat{p}_y, \hat{y}] = -i\hbar\hat{x}
\]

or

\[
[\hat{L}_z, \hat{x} + i\hat{y}] = [\hat{L}_z, \hat{x}] + i[\hat{L}_z, \hat{y}] = i\hbar\hat{y} + i(-i\hbar\hat{x}) = \hbar(\hat{x} + i\hat{y})
\]

\[
[\hat{L}_z, \hat{x} - i\hat{y}] = [\hat{L}_z, \hat{x}] - i[\hat{L}_z, \hat{y}] = i\hbar\hat{y} - i(-i\hbar\hat{x}) = -\hbar(\hat{x} - i\hat{y})
\]

We also note that
\[[\hat{L}^2, [\hat{L}^2, \hat{x}]] = 2\hbar^2 \{\hat{x}, \hat{L}^2\} \]

where

\[\{\hat{A}, \hat{B}\} = \hat{A}\hat{B} + \hat{B}\hat{A} \]

((Mathematica))

Proof

```mathematica
Clear["Global`"];

ux = {1, 0, 0}; uy = {0, 1, 0}; uz = {0, 0, 1};

r = {x, y, z};

Lx := (\[hbar\] ux.(-\[I\] Cross[r, Grad[#, {x, y, z}]])) & // Simplify;
Ly := (\[hbar\] uy.(-\[I\] Cross[r, Grad[#, {x, y, z}]])) & // Simplify;
Lz := (\[hbar\] uz.(-\[I\] Cross[r, Grad[#, {x, y, z}]])) & // Simplify;
Lsq := (Lx[Lx[#]] + Ly[Ly[#]] + Lz[Lz[#]]) &;

eq2 = Lsq[Lsq[x \psi[x, y, z]]] - Lsq[x Lsq[\psi[x, y, z]]] - Lsq[x Lsq[\psi[x, y, z]]] + x Lsq[Lsq[\psi[x, y, z]]] // FullSimplify;

eq3 = 2 \[hbar\]^2 (x Lsq[\psi[x, y, z]] + Lsq[x \psi[x, y, z]]) // FullSimplify;

eq2 - eq3 // Simplify

0
```

2. **Eigenkets of angular momentum**

\[\hat{L}^2|l,m\rangle = \hbar^2 (l + 1)|l,m\rangle \]
$\hat{L}_z|l,m\rangle = \hbar m|l,m\rangle$

$\hat{L}_+|l,m\rangle = \hbar \sqrt{(l-m)(l+m+1)}|l,m+1\rangle$

$\hat{L}_-|l,m\rangle = \hbar \sqrt{(l+m)(l-m+1)}|l,m-1\rangle$

where

$\hat{L}_+ = \hat{L}_x + i\hat{L}_y$, \hspace{1cm} $\hat{L}_- = \hat{L}_x - i\hat{L}_y$

3. Selection rule-I

Using the relation

$\hat{L}_z|l,m\rangle = \hbar m|l,m\rangle$

we have

$\langle l',m'|\hat{L}_z,\hat{z}|l,m\rangle = 0$

or

$\langle l',m'|\hat{L}_z \hat{z} - \hat{z} \hat{L}_z|l,m\rangle = 0$

or

$(m'-m)\langle l',m'|\hat{z}|l,m\rangle = 0$

Then we get the relation

$m' = m$, for the dipole ion the z direction.

4. Selection rule-II

Using the relation

$\hat{L}_z|l,m\rangle = \hbar m|l,m\rangle$
we have
\[\langle l', m'|\hat{L}_z, \hat{x} + i\hat{y} \rangle|l, m\rangle = \hbar \langle l', m'|\hat{x} + i\hat{y} \rangle|l, m\rangle, \]
or
\[\langle l', m'|\hat{L}_z (\hat{x} + i\hat{y}) - (\hat{x} + i\hat{y})\hat{L}_z|l, m\rangle = \hbar \langle l', m'|\hat{x} + i\hat{y} \rangle|l, m\rangle \]
or
\[(m' - m - 1) \langle l', m'|\hat{x} + i\hat{y} \rangle|l, m\rangle = 0 \]

Then we get the relation
\[m' = m + 1, \text{ for the dipole ion the } x, y \text{ direction.} \]

5. Selection rule-III

Using the relation
\[\hat{L}_z|l, m\rangle = \hbar m|l, m\rangle \]

we have
\[\langle l', m'|\hat{L}_z, \hat{x} - i\hat{y} \rangle|l, m\rangle = -\hbar \langle l', m'|\hat{x} - i\hat{y} \rangle|l, m\rangle, \]
or
\[\langle l', m'|\hat{L}_z (\hat{x} - i\hat{y}) - (\hat{x} - i\hat{y})\hat{L}_z|l, m\rangle = -\hbar \langle l', m'|\hat{x} - i\hat{y} \rangle|l, m\rangle \]
or
\[(m' - m + 1) \langle l', m'|\hat{x} - i\hat{y} \rangle|l, m\rangle = 0 \]

Then we get the relation
\[m' = m - 1, \text{ for the dipole ion the } x, y \text{ direction.} \]
6. Selection rule-IV

Using the commutation relation

\[[\hat{L}^2, [\hat{L}^2, \hat{x}]] = 2\hbar^2 \{\hat{x}, \hat{L}^2\} \]

we get the following equation,

\[\langle l', m'| \hat{L}^2, [\hat{L}^2, \hat{x}] \rangle |l, m\rangle = 2\hbar^2 \langle l', m'| \hat{x}, \hat{L}^2 \rangle |l, m\rangle \]

or

\[\langle l', m'| \hat{L}^2 \hat{L}^2 \hat{x} - 2\hat{L}^2 \hat{x} \hat{L}^2 + \hat{x} \hat{L}^2 \hat{L}^2 \rangle |l, m\rangle = 2\hbar^2 \langle l', m'| \hat{x} \hat{L}^2 + \hat{L}^2 \hat{x} |l, m\rangle \]

Here we use the relation

\[\hat{L}^2 |l, m\rangle = \hbar^2 l(l+1)|l, m\rangle, \quad \text{and} \quad \langle l, m| \hat{L}^2 = \hbar^2 l(l+1)|l, m\rangle \]

Then we have

\[\hbar^4 [l'^2 (l'+1)^2 - 2l'(l'+1)(l+1) + l^2 (l+1)^2 - 2l'(l'+1) - 2l(l+1)]\langle l', m'| \hat{x} |l, m\rangle = 0 \]

or

\[(l'-l-1)(l'-l+1)(l'+l)(l'+l+2)\langle l', m'| \hat{x} |l, m\rangle = 0 \]

The last factor yields the selection rule

\[l' = l \pm 1 \]

\[(\text{Mathematica}) \]

\[g_1 = a^2 (a + 1)^2 - 2 a (a + 1) b (b + 1) + b^2 (b + 1)^2 - 2 a (a + 1) - 2 b (b + 1) // \text{Factor} \]

\[(-1 + a - b) (1 + a - b) (a + b) (2 + a + b) \]
Since \(l' \) and \(l \) are both non-negative, the \((l'+l+2)\) term cannot vanish, and the \((l'+l)\) term can only vanish for \(l' = l = 0 \). However, this selection rule cannot be satisfied, since the states with \(l' = l = 0 \) are independent of direction, and therefore these matrix elements of \(\hat{x} \) vanish. Formally, one easily shows this

\[
\langle 0,0|\hat{x}|0,0\rangle = 0
\]

using the parity operator.

((Proof))

\[
\hat{x}\hat{x}\hat{x} = -\hat{x}
\]

where the parity operator satisfies the relations,

\[
\hat{x}^+ = \hat{x}, \quad \hat{x}^2 = 1
\]

\[
\langle 0,0|\hat{x}\hat{x}|0,0\rangle = -\langle 0,0|\hat{x}|0,0\rangle
\]

or

\[
\langle 0,0|\hat{x}|0,0\rangle = 0
\]

where

\[
\hat{x}|l,m\rangle = (-1)^l|l,m\rangle,
\]

and

\[
\hat{x}|0,0\rangle = |0,0\rangle, \quad \text{and} \quad \langle 0,0|\hat{x} = \langle 0,0|
\]

7. Dipole selection rule

The dipole radiation is emitted if

\[
M = \langle f | e \cdot \hat{r} | i \rangle = e \cdot \langle f | \hat{r} | i \rangle = e \cdot D_f
\]
does not vanish, where \(e \) is the electric field (the polarization vector), and

\[
D_{\beta} = \langle f | \hat{\epsilon} | i \rangle
\]

We assume that \(|i\rangle = |l, m\rangle \) and \(|f\rangle = |l', m'\rangle \). Then we have

\[
D_{\beta} = \langle l', m' | \hat{x} | l, m \rangle e_x + \langle l', m' | \hat{y} | l, m \rangle e_y + \langle l', m' | \hat{z} | l, m \rangle e_z,
\]

(i) For \(m' = m \).

\[
\langle l', m' | \hat{z} | l, m \rangle \neq 0, \quad \langle l', m' | \hat{x} | l, m \rangle = 0, \quad \langle l', m' | \hat{y} | l, m \rangle = 0
\]

\[
D_{\beta} = \langle l', m' | \hat{x} | l, m \rangle e_x + \langle l', m' | \hat{y} | l, m \rangle e_y + \langle l', m' | \hat{z} | l, m \rangle e_z
\]

= \langle l', m' | \hat{z} | l, m \rangle e_z

\(D_{\beta} \) is directed along the \(z \) axis.

(a) Suppose that the wavevector \(k \) of the emitted photon is along the \(z \) axis. There is no radiation in the \(z \)-direction since the polarization vector \(\epsilon \) is perpendicular to \(D_{\beta} \) (the \(z \) axis).

(b) For example, we consider light going in the \(x \) direction. It can have two directions of polarization, either in the \(z \) or in the \(y \) direction. A transition in which \(\Delta m = 0 \), can produce only light which is polarized in the \(z \) direction.
Fig. \(m' = m. \) \(\mathbf{D}_f \parallel z \). The light propagating along the \(x \) direction. It is a linearly polarized wave (along the \(z \) axis).

(ii) For \(m' = m + 1 \)

\[
\left< l', m' | \hat{\hat{r}}_z | l, m \right> = 0, \quad \left< l', m' | \hat{\hat{z}} | l, m \right> = 0.
\]

where

\[
\hat{\hat{r}}_+ = \frac{\hat{x} + i\hat{y}}{\sqrt{2}}.
\]

(iii) For \(m' = m - 1 \)

\[
\left< l', m' | \hat{\hat{r}}_z | l, m \right> = 0, \quad \left< l', m' | \hat{\hat{z}} | l, m \right> = 0.
\]

where
We now consider the matrix element with \(m' = m \pm 1 \).

\[
D_{m'} = \langle l', m' | \hat{x} e_x + \hat{y} e_y + \hat{z} e_z | l, m \rangle
\]

\[
= \langle l', m' | \hat{x} e_x + \hat{y} e_y | l, m \rangle
\]

\[
= \langle l', m' | \hat{r}_+ e_x + \hat{r}_{-} e_x | l, m \rangle
\]

\[
= e_+ \cdot \langle l', m' | \hat{r}_+ | l, m \rangle + e_- \cdot \langle l', m' | \hat{r}_- | l, m \rangle
\]

where

\[
e_+ = \frac{e_x + ie_y}{\sqrt{2}}, \quad e_- = \frac{e_x - ie_y}{\sqrt{2}}.
\]

(Jones vector notation)

or

\[
e_x = \frac{1}{\sqrt{2}} (e_+ + e_-), \quad e_y = \frac{1}{\sqrt{2i}} (e_+ - e_-)
\]

and

\[
\hat{x} e_x + \hat{y} e_y = \hat{r}_+ e_+ + \hat{r}_- e_-
\]

Note that

\[
e_+ \cdot e_+ = 0, \quad e_- \cdot e_- = 0
\]

\[
e_+ \cdot e_- = 1, \quad e_- \cdot e_+ = 1
\]

(a) When \(m' = m + 1 \),

\[
D_{m'} = \langle l', m' | \hat{x} e_x + \hat{y} e_y | l, m \rangle = e_- \langle l', m' | \hat{r}_- | l, m \rangle
\]
has the same direction of the left circularly polarization vector \((e_\ldots) \). Then the emitted photon which is right circularly polarized \((e_\ldots) \), can propagate along the \(z \) axis. A photon with right-hand circular polarization carries a spin \(+\hbar\) in the \(z \) direction (the propagation direction).

![Diagram](image.png)

Fig. The case of \(m' = m + 1 \) (right circularly polarization). A right circularly polarized photon \((e_\ldots) \) propagates with a wavevector \(k \) in the \(z \) direction. Note that the electric field is denoted by \(\cos(kz - \omega t)e_x + \sin(kz - \omega t)e_y \). This electric field rotates in clock-wise sense with time \(t \), and rotates in counter clock-wise sense with \(z \) (as the wave propagates forward). The corresponding spin of the photon is directed in the positive \(z \) direction \((\hbar)\).

\[
\mathbf{D}_{j,\ldots}(\approx e_\ldots). \quad E(\approx e_\ldots). \quad (e_\ldots \cdot e_\ldots = 1, e_\ldots \cdot e_\ldots = 0).
\]

(b) When \(m' = m - 1 \)

\[
\mathbf{D}_{jl} = \langle l', m'|\hat{x}e_x + \hat{y}e_y |l, m\rangle = e_x \langle l', m'|\hat{e}_x |l, m\rangle
\]

is parallel to the right circularly polarization vector \(e_\ldots \). The emitted photon with left circularly polarization \((e_\ldots) \) can propagate along the \(z \) axis. A photon with the left-hand polarization carries a spin \(-\hbar\), that is, a spin direction opposite to the \(z \) direction.
The case of $m' = m - 1$ (left circularly polarization). A left circularly polarized photon (\mathbf{e}) propagates with a wavevector \mathbf{k} in the z direction. Note that the electric field is given by $\cos(kz - \omega t)e_x - \sin(kz - \omega t)e_y$. This electric field rotates in counter clock-wise sense with time t, and rotates in clock-wise sense with z (as the wave propagates forward). The corresponding spin of the photon is directed in the negative z direction, as $-\hbar$. $D_z(\approx \mathbf{e}_+)$.

$E(\approx \mathbf{e}_-) \cdot (\mathbf{e}_+ \cdot \mathbf{e}_- = 1, \mathbf{e}_+ \cdot \mathbf{e}_+ = 0)$.

The rules on Δm can be understood by realizing that σ^+ and σ^- circularly polarized photons carry angular momenta of $+\hbar$ and $-\hbar$, respectively, along the z axis, and hence m must change by one unit to conserve angular momentum. For linearly polarized light along the z axis, the photons carry no z-component of momentum, implying $\Delta m = 0$, while x or y-polarized light can be considered as a equal combination of σ^+ and σ^- photons, giving $\Delta m = \pm 1$.

REFERENCES

D. Bohm, Quantum Theory (Prentice Hall, New York, 1951).
E. Hecht Optics, 4-th edition (Addison Wesley, 2002).

