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Raman scattering or the Raman effect, which is the inelastic scattering of a photon was 
discovered by C. V. Raman and K. S. Krishnan in liquids, and by G. Landsberg and L. I. 
Mandelstam in crystals. The effect had been predicted theoretically by Adolf Smekal in 1923.  
When photons are scattered from an atom or molecule, most photons are elastically scattered 
(Rayleigh scattering). A small fraction of the scattered photons are scattered by an excitation, 
with the scattered photons having a frequency different from that of the incident photons. Raman 
received Nobel Prize for his work on the scattering of light. 

The Kramers-Heisenberg dispersion formula is an expression for the cross section for 
scattering of a photon by an atomic electron. It was derived before the advent of quantum 
mechanics by Hendrik Kramers and Werner Heisenberg in 1925, based on the correspondence 
principle applied to the classical dispersion formula for light. Heisenberg’s breakthrough to 
matrix mechanics was directly stimulated by studies of interaction of quantized material systems 
with electromagnetic radiation. 

The historical siginificance of the Kramers-Heisenberg formula is discussed in detail by M. 
Dresden (see the Appendix). 
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1. Rayleigh scattering  
 

 
 

Fig. Rayleigh scattering. 21    . The elastic scattering. 

 
Why the sky is blue in daytime? That is because of the Rayleigh scattering. The wavelength 

of blue light is much shorter than that of red light. The Rayleigh scattering is an elastic scattering. 
The cross section of the Rayleigh scattering due to the small particles with diameter d is given by 
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where n is the refractive index n of particles from a beam of unpolarized light of wavelength λ. 
Such a strong wavelength dependence of the scattering (~λ−4) means that shorter (blue) 
wavelengths are scattered more strongly than longer (red) wavelengths. This results in the 
indirect blue light coming from all regions of the sky. Rayleigh scattering is a good 
approximation of the manner in which light scattering occurs within various media for which 
scattering particles have a small size parameter. 
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Why is the sky red in sunset? The reddening of sunlight is intensified when the sun is near 
the horizon, because the density of air and particles near the earth's surface through which 
sunlight must pass is significantly greater than when the sun is high in the sky. The Rayleigh 
scattering effect is thus increased, removing virtually all blue light from the direct path to the 
observer. The remaining un-scattered light is mostly of a longer wavelength, and therefore 
appears to be orange. 
 
2. Raman scattering 
 

 
 

Fig. Raman scattering. Stokes’ line. 21    fi EE  (energy conservation). 

112 )(    if EE  since if EE  . A Stokes’ line in atomic spectra is more 

reddish than that of the incident radiation. The inelastic scattering. 
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Fig. Raman scattering. Anti-Stokes’ line. 21    fi EE  (energy conservation). 

112 )(    fi EE  since if EE  . A Stokes’ line in atomic spectra is more 

more violet than that of the incident radiation. The inelastic scattering. 
 

Here we consider the scattering of photon by atomic electrons. Before the scattering, the 

atom is the state i , and the incident photon is denoted by ) ,( εk . After the scattering, the atom 

is left in the state f , and the outgoing photon is denoted by )' ,'( 'εk  

 
The initial state is 
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The final state is 
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Note that 1Ĥ  and 2Ĥ  are the Hamiltonian for the interaction between radiation field and atoms. 

1Ĥ  is a linear )( pA   term (related to one photon), while 2Ĥ  is a quadratic )( AA   term (related 

to two photons). So 2Ĥ  is higher order perturbation compared to 1Ĥ .  
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The above process is made of the absorption of photon with 1  and the emission of photon with 

2 . The transition rate in this case is given by 
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The first term is calculated as 
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Using the electric dipole approximation, we assume that 
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Then we have 
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where )(kε  is the polarization vector for the photon with the wave vector k. 

 

0)(  kkε  with 2 ,1  
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We next calculate the second term. There are two types of the intermediate state b . 

 

 
 

Fig. Light scattering due to the Hamiltonian 1Ĥ  (type-1). The horizontal axis is time. The 

intermediate state is 21  ,1 nnb   

 

 
 

Fig. The light scattering due to the Hamiltonian 1Ĥ  (type-2). The horizontal axis is time. The 

intermediate state is 1 , 21  nnb  

 
The resultant transition rate for this process is given by 
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The first term is the Rayleigh component since ac EE  . We note that the Rayleigh component 

exists in the second term. The contribution with ac EE   is called the Raman component. 

Equation (1) is called the Kramers-Heisenberg formula for steady state light scattering. We 

define )( 121 acR  as 
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which is called the Raman tensor.  
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Note that bE  is replaced by 

 

iEE bb   

 
because of the finite width ( 2 ) in the intermediate (excited) state [so-called natural width]. 

Then we have 
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When ca   we have 
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This expression can be rewritten using the electric dipole moment ( er ), as 
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Fig. Schematic diagram for the Stokes’ line, Rayleigh scattering, and anti-Stokes’ line. 
 
3. Brillouin scattering 

The light scattering experimental technique is an exceedingly valuable tool for the study of 
fundamental excitations in solids, such as phonons. We now consider the Brillouin scattering 
when the incident light interacts with phonon. 
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Fig. Stokes line at  12  . Anti-Stokes line at  12   

 
The Brillouin scatterings are schematically shown in the above figure. , in which ω1 and ω2 is the 
frequency of the incident and outgoing light.  
 

)(12 q . (energy conservation) 

 

qkk  21   (momentum conservation) 

 

)(qΩ  is the angular frequency of phonon at the wave vector q. The photon at  12   is 

called the Stokes line and that at  12   is called the anti-Stokes line. The intensity of the 

Stokes line involve the matrix element for phonon creation, 
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where qn  is the initial population of phonon mode q.  
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Fig. Brillouin scattering. Stokes line. Creation of phonon. Red (photon). Blue (phonon). 
 
The intensity of the anti-Stokes line involve the matrix element for phonon annihilation, 
 

qqq nnunI 
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Fig. Brillouin scattering. Anti-Stokes line. Annihilation of phonon. Red (photon). Blue 
(phonon). 
 
 
If the phonon population is initially in thermal equilibrium at temperature T, the intensity ratio of 
the two lines is 
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where qn  is the Planck’s distribution function 
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Note that the intensity of the Stokes line is stronger than that of the anti-Stokes line. 
 
4. Rayleigh scattering (revisited) 

We consider the case when  
 

fc EE  , ia EE      21  

 
This corresponds to the elastic scattering of light. It is also called Rayleigh scattering because 
this problem was treated classically by Lord Rayleigh.  
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In order to simplify Eq.(1), we rewrite the factor fi 21 εε   as follows. 
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where i  is the initial state, f  is the final state, and b  is the intermediate state. We note that 
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where bffb EE  . Using this relation, Eq.(2) can be rewritten as 
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Here we note that the first term reduces to zero, since 
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The second term is 
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d  

 
Thus we get the differential cross section for the Rayleigh scattering is 
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Using the relation 
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5. Polarization pattern in the sky 
From a book 
I.R. Kenyon, The Light Fantastic: A Modern Introduction to Classical and Quantum Optics 
(Oxford University, 2008). 
 

The Rayleigh scattering is an elastic scattering and is proportional to 4 . It explains the blue 
color of the sky. The blue color of the sky is caused by the Rayleigh scattering of sunlight off the 
molecules of the atmosphere. The Rayleigh scattering, is more effective at short wavelengths 
(the blue end of the visible spectrum). Therefore the light scattered down to the earth at a large 
angle with respect to the direction of the sun's light is predominantly in the blue end of the 
spectrum.  

The scattering of sunlight from gas molecules in the upper atmosphere is responsible for the 
blue of the sky. In addition if the blue sky is viewed through a Polaroid, looking at right angles to 
the direction linking the observer to the Sun, the light is found to be strongly polarized. 
Scattering, as in this example, in which the particles doing the scattering are much smaller than 
the wavelength of the radiation is called Rayleigh scattering. The strong dependence on 
wavelength causes blue light to be scattered about ten times more effectively than red light, 
which accounts for the blue of a clear sky. It also explains why light from the setting Sun, which 
has a long path through the atmosphere, should look red.  
 



 
Fig.1 Rayleigh scattering at 90. In the upper panel light is polarized perpendicular to the 

scattering plane, and in the lower panel it is polarized in the scattering plane. 
 
Figure 1 has a viewer looking at the blue sky in a direction at right angles to the line passing 
through the Sun. Any molecule scattering light first absorbs the light, becoming polarized in 
essentially the same direction as the light absorbed, and then re-emits light. When the molecule 
is excited by light polarized perpendicular to the plane of scattering, as seen in the upper panel of 
Fig.1, the observer is viewing in a direction for which the intensity is at a maximum. On the 
other hand, if the light is polarized in the plane of scattering, as illustrated in the lower panel of 
Fig.1, then the molecular dipole points towards the observer and no light would be seen. 
However there can be some misalignment of the molecular dipole axis with the electric field 
inducing it due to asymmetry of the structure of the molecule, and then a little light would be 
seen. In any case the light received is strongly polarized perpendicular to the plane of scattering. 
Away from this viewing direction the polarization falls off rapidly. 
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APPENDIX 
Background for the development of Kramers and Heisenberg formula 
M. Dresden, H.A. Kramers: Between Tradition and Revolution 
 

The joint paper by Kramers and Heisenberg, "On the Dispersion of Radiation by Atoms", 
was completed in Copenhagen in December 1924. It was a remarkable paper on several counts. 
It was the last, and certainly as far as physics was concerned, the most important paper in which 
the BKS (Bohr-Kramers-Slater) philosophy was expressed explicitly. Although the detailed 
dependence of the Kramers-Heisenberg results on the BKS approach was rather slight, there are 
frequent allusions to the BKS papers, and at least in one important instance, specific use is made 
of the BKS ideas. Furthermore, the Kramers Heisenberg paper contains the first (and only) 
organized, systematic exposition of Kramers' ideas on dispersion theory. Up until that time ideas 
were hinted at in short notices and abbreviated comments; Kramers had long planned to write a 
detailed paper on this material but it took about a year (from December 1923 until December 
1924) before such a paper was completed. Thus, the Kramers-Heisenberg paper includes-apart 
from a number of new results such as the Smekal-Raman effect - an overview of Kramers' 
thinking during that period. But perhaps most important is that the Kramers Heisenberg paper 
contained the main elements and basic method from which Heisenberg later developed his 
matrix mechanics. The notation, general approach, and some specific results of the Kramers-
Heisenberg paper were all essential ingredients in Heisenberg's fundamental paper on matrix 
mechanics. None of this detracts in any way from Heisenberg's monumental contribution, but the 
recognition of these particular circumstances is necessary to put Kramers' contributions in their 
proper perspective. The influence of the Kramers-Heisenberg paper on the later Heisenberg 
paper was certainly considerable, and Kramers, without any doubt, was the senior and major 
author of the Kramers-Heisenberg paper. To appreciate Kramers' contribution, it is necessary to 
analyze the evolution of his thinking on dispersion theory during this period. Unfortunately, this 
is not made any easier by Kramers' erratic publishing schedule and his simultaneous 
preoccupation with the BKS theory. Nevertheless, published papers, available letters, and recent 
interviews allow the reconstruction of a coherent, plausible picture of this development. The 
innovations in the Kramers-Heisenberg paper can be understood most simply if its contents are 
presented against the background of Kramers' earlier work in dispersion theory. To make the 
discussion transparent and self-contained, it is best to summarize t some of these earlier results. 
 


