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It is known that the operator for rotation through 2 radians for a fermion causes a 

reversal of the sign of the wave function. Only after two full rotations through 4 does 
the system come back to its original value. In the early days of quantum mechanics, 
people reassured themselves that in the experimentally accessible probabilities   the 

phase factor cancels, hence there seemed to be no reason to worry about this strange 
property. Aharonov and Suskind (1967) and independently, Berstein (1967) predicted the 
possibility of observation of the 4 symmetry for interferometric experiments, and Eder 
and Zeilinger (1967) gave the theoretical framework for the neutron interferometric 
realization. 

It can be confirmed from the experiment using the precession of 2 radians in a 
magnetic field using a neutron interferometer (Werner et al. and Rauch et al. (1975)]. 
Here we discuss the detail of the experiment, a 2 rotation of spin 1/2 system, based on 
the textbook of Sakurai and Napolitano, Modern Quantum Mechanics (2011, revised 
version). 
 
1. Spin and magnetic moment of neutron 

The neutron spin and the magnetic moment. The neutron is a fermion with spin 1/2. 
The spin operators are given by 
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The neutron wave function can be expressed by 
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The neutron has a magnetic moment 
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where 
 

 n= -1.91304272(45). 
 
and N is the nuclear magneton. 
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where mp is the rest mass of proton. So the magnitude of the magnetic moment is 
 

2410)71(662347055.991304272.1  NNnn   emu. 

 
or 
 

Nn  91304272.1  

 
where emu = erg/Oe. Here we use the expression for the nuclear magnetic moment as 
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((Note)) 

The non-zero magnetic moment of the neutron indicates that it is not an elementary 
particle. The sign of the neutron's magnetic moment is that of a negatively charged 
particle. Similarly, the fact that the magnetic moment of the proton, μp = 2.792847356(23) 
μN, is not equal to 1 μN indicates that it too is not an elementary particle. Protons and 
neutrons are composed of quarks, and the magnetic moments of the quarks can be used to 
compute the magnetic moments of the nucleons.  
https://en.wikipedia.org/wiki/Neutron_magnetic_moment 

 
 
2. Rotation operator 

We now consider the rotation operator around the u axis by for the spin 1/2 
system (neutron), which is given by 
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When  = 2,  
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For any ket  , we have 

 

 )2(ˆ
uR . 

 
The ket for the 2 rotated state differs from the original ket by a minus sign. When 

z , we have 
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zzRu )2(ˆ  , and zzRu )2(ˆ  . 

 
We also note that 
 

zzRu )4(ˆ  , and zzRu )4(ˆ  . 

 
3 Neutron interferometry experiment 

A beam of thermal neutrons is split into two parts, path A-B-D and path A-C-D. That 
path A-B-D goes through a magnetic-field-free region. In contrast, the path A-C-D enters 
a small region where a static magnetic field is present. A variable phase shift is obtained 
by having the neutrons of the path A-C-D pass through a uniform magnetic field over a 
distance l. 
 

 
 

 
Fig. A schematic diagram of the neutron interferometer. On the path AC the neutrons 

are in a magnetic field B (0 to 500 Oe) for a distance l (= 2 cm). 
 

The spin Hamiltonian Ĥ of the neutron in the presence of a magnetic field B (//z) 
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The Larmor angular frequency  is defined as 
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or 
 

  = 1.83247 x 104 B(Oe),  [rad/s] 
 
or 
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We note that 
 

  = 1.20616 x 10-3 B(Oe) [neV]. 
 
________________________________________________________________________ 
((Example)) 

When B = 165 Oe, we have 
 

 = 3.02358 x 106 rad/s, f = 0.48122 MHz, 
 
and 
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________________________________________________________________________ 

We now consider the time dependence of the ket vector )(t , 
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where the time evolution operator )(ˆ tU is given by 
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Let the angle  be defined as 
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where the time T during which the neutron passes the magnetic-field region, is given by 
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Note that the momentum of the neutron is given from the de Broglie relation,  
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When t = T, the unitary operator )(ˆ tU  is equivalent to the rotation operator )(ˆ zR , 
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Then we have 
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For any ket given by 
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we have 
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The appearance of the half-angle /2 has an extremely interesting consequence. 
 
The state   in the region D is given by 
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The intensity is proportional to  , 
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Then we have 
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Fig. Plot of 
4
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cos22 2    as a function of the phase difference . 

 
The period of  is 
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((Experimental result)) Werner et al. (1975) 
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Fig. The difference in counts between the counters C3 and C2 as a function of B. 
 
4. Numerical calculation 

Using the Mathematica we get the relation 
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where B  (in units of Oe) and l (in units of cm), (in units of Å). Note that in the paper 
of Werner et al., on the other hand, they obtained  
 

)(

272
)(

A
lB


 , (Werner et al)  (2) 

 
which is different from our calculation. We are not sure how Werner et al. derived such a 
relation. 
(a) If 445.1 Å and l = 2.0 cm, the value of B can be evaluated as 
 

1.94B  Oe, 
 

from Eq.(2).  (Werner et al. 1975). This value of B is rather different form the 
experimental value 
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262 B  Oe. (experimental result). 

 
(b) Using the same values of   and l, the value of B can be evaluated as 
 

52.9B  Oe. 
 

from Eq.(1). This value of B is rather different form the experimental value. 
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APPENDIX 
 

((Mathematica)) The calculation of 
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Clear "Global` " ;

rule1 c 2.99792 1010, 1.054571628 10 27,

gn 1.9130427, mn 1.674927211 10 24,

qe 4.8032068 10 10, 10 8, n 9.66237055 10 24,

neV 1.602176487 10 12 10 9 ;

1
2 n
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f1 . B 165 ScientificForm
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