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((2-1))
1. Consider the spin-precession problem discussed in the text. It can also
be solved in the Heisenberg picture. Using the Hamiltonian

H= —(Q)S,=wS.,
mc/ ° B

write the Heisenberg equations of motion for the time-dependent oper-
ators S,(t), S,(1), and S,(¢). Solve them to obtain S, , . as functions of
time.

((Solution))
Sy, Sy, and S, are the operators in the Schrodinger picture and Sy(t), Sy(t), and S,(t) are the
operators in the Heisenberg picture:

Lhit

S.(t) = eéHtSie_h
- 1
5i(1) =[5 (0. H]

s, _ 1 _1 _
T_ |h [Sz(t)ﬂaﬁz] - |h [Sz(t)ba)sz(t)] =0

S,(t) =S, (no time dependent)

ds, () _ 1

1
dt E[Sx(t)aa)sz]:E[Sx(t)ﬂwsz(t)]:_a)sy(t) (1)

where
[S, (), S, (D] =1AS, (V).

ds, (t)

1 1
o —E[Sy(t),wsz]—E[Sy(t),wsz(t)hwsx(t) )

where

Ch2 solutions 1



[S, (©),S, (1] = %S, (1).

From Egs. (1) and (2), we get

d’s, () ds, 2
LASZA =—w’S (t
dt? @ dt @S, (1)
and
d’s,() _ ds

X 42
e 0] el oS, (1).

The general solution of the differential equation is

S, (1) =C, cos(at) + C, sin(wt)
and
S, (t) =D, cos(at) + D, sin(at) .

Att=0,

S, (t)=S, (Schrodinger picture)
S,()=S,  (Schrodinger picture)

ds, (t = 0)
T T =08, (t=0) = ~aS
dS. (t=0
%:aﬁx(tﬂ):wsx.

Then we have

S, () =S, cos(at) - S sin(wt)

S,(t) =S, sin(awt) + S, cos(at).

((2-2))
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2. Look again at the Hamiltonian of Chapter 1, Problem 11. Suppose the
typist made an error and wrote H as

H=H[1){1|+ Hpl2)(2|+ H,,[1){2|.

What principle is now violated? Illustrate your point explicitly by
attempting to solve the most general time-dependent problem using an
illegal Hamiltonian of this kind. (You may assume H,, = H,, =0 for
simplicity.)

((Solution))
We assume that H,, = H,, = 0. Hamiltonian is not a Hermitian operator.

) =U®)w(©)
\ i i) 1 0 Y
U(t)—eXp(—%Htj—1+(—%Ht)+5(—EHtj + -
. (0 HIZJ (0 IJ
H= =H,
0 O 0 0
42 (0 lej(o lej
H2 = =0
0O 0 N0 O

HAt? i

i 1 0) [I+—2— —_H.t
Aarie 11 —=Ht] - 2 12 I 0
G =1 ~5Me {LHt 1} O ;{O J
0 1 o %let 1

Therefore U (t) is not a Unitary operator. The conservation law of probability is violated.

((Mathematica 5.2))
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H

={{0,H12},{0,0}}
{{o,m12},{o,0}}
U= MatrixExp[—% Ht] 7/ Simplify

({1, - 125} j0, 1y)

UT=Transpose[_U]
(11,0}, (- 112t 4y

i H12 €
UH = {{1, 0}, {IT, 1}}
1 H12
{{11 0}1 {]l-h-t’ 1}}
A=UH.U//Simplify
JiHth}

((r, -1

: 2 42
{Jllet, 1. H12“< t }}
h h?

A//MatrixForm
(1 _iH12t
h

11H12t 14 |-|1222 t2

\

B=U. UH//Slmle.fy

~——

H122 t2 iHI2 t
{{1+ . - }
n2 Fal
1 H1Z t
(1}
B//MatrixForm
(1, HI22€2 _ iHI2t )
i 12 I
| JiH12t I
\ 1 )

((2-3))
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gy ettt R

3. An electron is subject to a uniform, time-independer
strength B in the positive z-direction. At ¢ =0 the el TEI
be in an eigenstate of S+h with eigenvalue 4 /2, wher
lying in the xz-plane, that makes an angle 8 with th
a. Obtain the probability for finding the electron in
as a function of time.

b. Find the expectation value of S, as a function of

c. For your own peace of mind show that your answers make gooa
sense in the extreme cases (i) 8 —= 0 and (1) 8 = 7/2.

a.
Initial state is

la(t=0)) = COS(§)| +)+ sin(é) -)

and final state is

1
4, =5114) 4}

Hamiltonian is described as

H=—Bs _us. <0
mc

At time t

iot

a®)=e " |a(t =0))

- e_i%sz {cos(§j| +)+ Sin(g) —>} .
=w{§%ghwﬁ{§%?k>

The probability of finding the electron in the state |+>X :

P =|, (+|a®)
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X <+| a(t)>‘2 = l{cos(ﬁje";t + sin(ﬁje_“;t }{cos(ﬁje_”;t + sin(ﬁje“f}
2 2 ) > 5
= l[COSZ(ﬁj + Sinz(ﬁj + sin(ﬁj Cos(ﬁj(eiwt Lol )}

=E(l+sinﬁcosa)t)
b.
(8,)=(a®[s,|awm)
p
i ot cos=e
Aot w7
sin£e|7
2
ﬂ ot
i et sin—e ?
=§(cos§e2 singe ZJ 2 .
cosﬁefI7
2
=gcos£sin£(ei‘”t +e‘i“")
=§sinﬂcosa)t
C.
For =0
la(t=0))=|+)
it
lat) =€ 2|+)
|
P(t) = X<+|a(t)>‘ S
<Sx>:O
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For = /2

|at=0))=|+),
) 5| o) 0 )
Pt) = X<+|oz(t)>‘2 = %(l+cos a)t)

<Sx> = %cosa)t

((2-4))

4. Let x(t) be the coordinate operator for a free particle in one dimension
in the Heisenberg picture. Evaluate

[x(2), x(0)].

H=—
2mp

dxt) _ [ P | L[ p®]_1. o p®_1
dt % _X(t)’zm}ih{x(t)’ 2m }_ih Ihap(t) om ~m PO

*O_1 p(t){"—}:i[p(t), PO }zo
L m

dt  in in 2m
Then
xt) =P+t 1 x0)
m
[x(t), x(0)] = {&t +X(0), x(O)} = —it[x(O), p(0)]= _i_ht
m m m
((2-9))
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5. Consider a particle in one dimension whose Hamiltonian is given by

.

H= ks V(x).
By calculating [[ H, x], x] prove

hz

SKa"|¥la (B = Eur) = 30

where |a’) is an energy eigenket with eigenvalue E ..

= | 2 x| oo | 2

:_—ihi(p—z} }_[ m% x} ih%[x, p]:(ih)zlz—ﬁ

op\2m m m

Then

2

(a"[[[H,x] x]a") = —% (1)

On the other hand

(a"[[H,x]x]a")

)= @[H.xar) (e

D@ M. xar)(axlar) - (arxa)a[H. x]a)]

a'

{
- SE BN (€, Yerl )
=2 (E, -E, J(a"|x a‘)‘2

a'

2

Combining Egs. (1) and (2), we obtain

Z\ a'x|a’|" (E, —E.. I (3)

2m

((2-6))
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= mz{ % R
_ |h2(% 6% a\(;g)J
Then
Sy Ay ) =~ (r OLA R Ty )
When A=F-p
d

Since T = Lf)z (kinetic energy),
2m

2<f > —(F-VV (#)) =0 (Virial theorem)
We now consider the following case.

ot

[ o, o
on0) = (p,e" T-pe g ) =e " (g [F-plon)e M = (g, F Bl

(F-p)=(p (O -p

which is independent of t. Therefore %<f’ . f)) =0.
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((2-8)) )

8. Let |a’) and |a”) be eigenstates of a Hermitian operator 4 with
eigenvalues @’ and a”, respectively (a’# a”). The Hamiltonian oper-
ator is given by

H= Ia!>6<a11|+ Ial.f)a(atl,

where &8 is just a real number.

a. Clearly, |a’) and |a”) are not eigenstates of the Hamiltonian. Write
down the eigenstates of the Hamiltonian. What are their energy
eigenvalues?

b. Suppose the system is known to be in state |a”) at ¢t = 0. Write down
the state vector in the Schrodinger picture for ¢ > 0.

c. What is the probability for finding the system in |a”") for 7 > 0 if the
system is known to be in state |a’) at 1 =07
d. Can you think of a physical situation corresponding to this problem?

@

Eigenvalue equation

Hly) = Ely)
;A
=0
5 -E
EZ=0"
E=+5
For E=6
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Normalization
A]"+[B,]" =1

1

7

[A=[B.]=

)= la)+la)  Hso)=olrs)

-o)=la)-lal)  H-0)=-di-0)
(Note)

|+6
|-6)=Ula")

1
NG :(Un UlzJ[lJz(Ullj
1 U, Uxy\O0 U,
V2

~

=U | a‘) U: Unitary operator
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11
V2 2
b.
Att=0 lw(t=0))=|a)
a)=[+6)+]-)
(1)) =exp ——t]| (t=0))
- -] L 214

7|+5 +eh| 5}

NORC RREORC
b

More powerful solution is as follows.

sonn (00
U+HU=( J

|
of
N
]

N'—Sl"_

0 -0
AL A A i0
U exp(——tJU— p[—IU HY t]z e’ ,05
L 0 e
is 1 1 5 1 1
iH e NN n S
L Y O o U
h 0 e — — 0 e )= -——
V2o 2 2 2
or
12
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((Mathematica 5.2))
(*Sakuﬁai 21-8*) L .
U={{ - - b{--
VZ A2 NZ A2
1 1 1

(SRR By
(ENESRE SRR}

({1,0},{0,1})
- {{Bp[-* ], 0}, {0, B0

a
_i€s its
("5 0], fo.e'F))
HD//MatrixForm
_its
;(e h 0 \.
| Jité’
(0 e n )
U.HD.UH//ExpToTrig//Simplify

{{COS{‘;ﬁ], i Sin{lgi}}, {1 Sin{lgi}, cOs{‘gﬁ}}}

H

ité

)

(©)

P ey =|-isin( | ~sin’( %]
(d)

We choose S, as Hermitian operator

a)=l+). =]

H-20g B¢ (g_2Ms,

e
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[+6)=|+), and [-8)=[-)

X

precession motion of electron in the presence of a magnetic field B along the X-axis.

((2-9))

9. A box containing a particle is divided into a right and left compartment
by a thin partition. If the particle is known to be on the right (left) side
with certainty, the state is represented by the position eigenket |R)(|L)),
where we have neglected spatial variations within each half of the box.
The most general state vector can then be written as

&) =|R)(R|a) + |L){L|a),
where (R|a) and (L|a) can be regarded as “wave functions.” The

particle can tunnel through the partition; this tunneling effect is char-
acterized by the Hamiltonian

H=A(|L){R|+|R)(L]|),

where A is a real number with the dimension of energy.

a. Find the normalized energy eigenkets. What are the corresponding
energy eigenvalues?

b. In the Schrodinger picture the base kets |[R) and |L) are fixed, and
the state vector moves with time. Suppose the system is represented
by |a) as given above at ¢ = 0. Find the state vector |a, t, = 0; ¢) for
t > 0 by applying the appropriate time-evolution operator to |a).

c. Suppose at 7 = 0 the particle is on the right side with certainty. What
is the probability for observing the particle on the left side as a
function of time?

d. Write down the coupled Schrodinger equations for the wave func-
tions (R|a, 1,=0; t)and (L|a, t,=0; r ). Show that the solutions to the
coupled Schrodinger equations are just what you expect from (b).

e. Suppose the printer made an error and wrote H as

H=A|L){R|.
By explicitly solving the most general time-evolution problem with
this Hamiltonian, show that probability conservation is violated.

@)= R(Rle) +|L{L )

B A

Hamiltonian
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H = AL)R|+[R)(L)

a.
Eigenvalue equation

H|e) = Ele)

ol

Ch2 solutions

15



o) =& ") ¢ " (R)R|a) + L)L)

:e’LH[L(jE )= |E,)IR|ar) +L(}E )+|E, )<L|a}
I

-|ev" e e _fwﬂmwafJ4a " lE) )

1

:%eh |El>(<R|a>+<L|a>)+$e% |E,)(- (R|a) + (L|a))
= Lo (L) ¢ RN(RIe) + (e >)+2eh (L= [R)- (Rla)+ (L)

| o 5 i) ~isin{ 5 Rl 1)+ oy Rl i 5 YL )

More powerful method:

Unitary operator
1 1
RS
NN
XE

~oan (A0
U*HU:( J
0 -A

U exp(- - Hl —exp(— U AU =8 " 0
exp(- AU =exp(- 10 AU = ¢ O

e

S5
s

or

: I T 11
0 ¢ N R W
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At .. At
cos( — — Isin( —
(=) (=)
.. At At
— Isin( — cos( —
(=) )

At .. At
cos(;) -1 sm(?) <R| a>]
—i sin(%) cos(%) (L|er)

() =e " |a(0)) =

cos(%)<R|a> —Ii sin(%)<L|a>

—1i sin(%)( R|a> + cos(%)( L|a>

C.
Att=0,

a(t :0)> :|R>,which means <L|a> =0 and <R|a>:1.

|a(t)) =-i sin(%) L)+ cos[%) R)

The probability of observing the particle on the left side is
At At
2
P =|(L|a(t))| =|-isin| — | =sin’| —
-=[taw) ‘ (hj‘ (hJ
d.

Schrodinger equation
ih%|a(t)> = Hla(t)) with |a(ty)) =|a)
Multiplying (R| and (L|
ih§<R|a(t)> =(R|H|a(t)) = A(L|a(1))
ih§<L|a(t)> = (L|H|a(t)) = A(R|a(t)),

where
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(RH|a(t)) = A(L|a(t))
(L|H|a(®)) = A(R|a(1)).

gfitean- 2 ol

(ww)=13(s o G)

Here
R TR (N N
A2
e I
#4
Cisinl 2] ol A
J7) J7)
Therefore
ALYV ginl A
Ll I b
((2-10))

10. Using the one-dimensional simple harmonic oscillator as an example,
illustrate the difference between the Heisenberg picture and the
Schrodinger picture. Discuss in particular how (a) the dynamic variables
x and p and (b) the most general state vector evolve with time in each
of the two pictures.
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2
H :Io—+%ma)2x2

2m
a. variables X and p
Schrodinger picture => no change

Heisenberg picture

dxt) 1 1
dp(t) 1 o
e __ih[p(t)’H]_ ma’x(t)

Mo
p(t) = —mwx(0)sin wt + p(0) cos wt

X(t) = X(0)cos wt + (&j sin ot

b. state vector
Heisenberg picture => no change

Schrodinger picture

)= exp(—%tjw(t ~0))
with

Wt=0)=Yc,/n). ¢, = (nlw=0)

n)
—im(n+%)
=2.ce *n)
n

1

L
C,e ?
3

—i-w
=|ce ?

pt)=Yce
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E,= ha{n + l)
2

((2-11))
11. Consider a particle subject to a one-dimensional simple harmonic
oscillator potential. Suppose at ¢ = 0 the state vector is given by

exp(%m)fo),

where p is the momentum operator and a is some number with
dimension of length. Using the Heisenberg picture, evaluate the expec-
tation value (x) for 1 > 0.

In the Heisenberg picture

P

X(t) = Xcos ot + —sin ot
Mo

Using

Note

o)) ) o)
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(X)) = <O|exp( A jx(t)exp( aj|o)
:coswt<o|exp[“’7anexp(_“’7aj| >+Lsmwt<o|exp( pa jpexp( 'F;_laj|o>

M
1 .
= COS a)t<0|(x + a)| 0> + m—a)sm a)t<0| p| 0>
=acoswt
where

(0|x0y=0, (0[p|0)=0.

At t=0, the wave function is given by

(xw10) = (x| - 22 o

((2-12))
12. a. Write down the wave function (in coordinate space) for the state
specified in Problem 11 at 1 = 0. You may use

1/ x’ R h 1/2
‘5(;,) x=(ms) )
b. Obtain a simple expression for the probability that the state is found
in the ground state at ¢ = 0. Does this probability change for 7 > 0?

<x:p> = W—1/4x61/2exp
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ho h 0
X|=—==(x|—=)

T ox' i ox'

((x[p=(

<0|"*XP(— %}I 0) = [ ax(0] X'><X'|exp(_ %}

1 T
= *X,2|dx'exp| ——| — | |7 *X,%exp|——
0 .[ p 2(X0j 0 p

a2
=exp| —
p( 4ng

Therefore the probability is given by

oles{ - 22 Jo

0

P(t=0)=

P(t) = <0|exp(—%tjexp(_ ;F))(a ]| 0)

2
0

_ exp(_ i%tj<0|exp(— %]l 0)

2

= P(t=0)

invariant

((2-13))
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13. Consider a one-dimensional simple harmonic oscillator.

a. Using
mw i #in \/_n—
- VE ) - {m

evaluate (m|x|n), (m|p|n), (m|(x, p}|n), (m|x*|n), and (m| p*|n).

b. Check that the virial theorem holds for the expectation values of the
kinetic and the potential energy taken with respect to an energy
eigenstate.

() = () + ()
= ﬁ(\/ﬁé}n N 1+\/m5m,n+l)
(m] Bl = =iy "5 2 (misfm) ~(mla )

=—j @(\/ﬁé}n,n_] —\/mam,nn)
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{5, pjm) = inl(mla[m) - (m[a ")

= —|h{ n(n - 1)5 n-2 (n + 1)(n + 2)5m,n+2}

m

(m

(m[x*|n) = %(mkﬁz +8a" +a'a+4a|n)
@

- %(mkﬁz +a7 +(2a'a+ i)
o

= L{ nn+1)9, ,, +/+D(N+2)o, ., +(2n+1)5, .}
2Mmw ’ ’ ’

n) =g gt —aa+a’
2

n)
=—¥{ 113, s+ E DN+ 2)5, 00— (20D, )

Then<n|>2d—\f|n>:<n|>? dA [lmcozizj
dx dx\ 2

n) =me*(n|%*|n) = ha)(n +%}

A2

(o= (o

. dV
R—|n),
dx

showing that the virial theorem holds.

)
<p_> = <lma)2)’{2>
2m 2

The kinetic energy = potential energy

Note

((2-14))
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14. a. Using
(x'|p’y=(2mh) /%  (one dimension)
prove

’ - a 4
(P'Ix|la) =ih——(p'la).
ap

b. Consider a one-dimensional simple harmonic oscillator. Starting with
the Schrodinger equation for the state vector, derive the Schrodinger
equation for the momentum-space wave function. (Make sure to
distinguish the operator p from the eigenvalue p’.) Can you guess the
energy eigenfunctions in momentum space?

a.
(P¥e) = [ax(px)(x]a)
—jdxx’ p'[x)}x|a)
—J.dxx[\/_exp( Ipx D(X|a>
—J.dXIhi ! exp( P D(X|a>
op'\ V2
0
= lha—p'fdx( p'|xNx|a)
a 1
<2 (ol
b.
in-<-ly (1) = Hy )
ot
0 /o _ .L 2 l 2,2
lha<p|w(t)>—<p| p +2mw Xy (1))
1
o )+ S mo i L (pt)
Therefore

o, 1 0’ p? (p'
R A )
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Suppose that

n

po)=e " |wit=0)=e"

n,

we have
2

(P = =g ma'h’ S (R o P (PIn)

Here note that the Schrédinger equation in the position space is

' hz 82 ' 1 212 '
En<x|n>=—%a)('2 <x|n>+5ma) X% (x'|n}.

The eigenfunction in momentum space is

' _ n 7% 1 % _l 2
(p[n)=(n) (mmj exp[ ¢ ]Hn(c)

pV
maoh

with ¢ =

((2-15))
15. Consider a function, known as the correlation function, defined by
C(1) =(x(1)x(0)),

where x(7) is the position operator in the Heisenberg picture. Evaluate
the correlation function explicitly for the ground state of a one-dimen-
sional simple harmonic oscillator.

For the 1D harmonic oscillator (Heisenberg picture)

Xy, (1) = )?cosa)t+Lﬁsin wt
mw
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C(t)=(0

% (D%, (0)0)

. 1
=(0[%* cos at + a

pXsin a)0t| O>

;22

sinat ;..
o (0[px0)

h sinot( ih
=coso,t 7 + -
Mw, Mo, 2

=cos coot<0

0)+

h

— e—iwot
2Ma,

where we use

((2-16))
16. Consider Elgain a one-dimensional simple harmonic oscillator. Do the
following algebraically, that is, without using wave functions.

a. Construct a linear combination of |0) and |1) such that {(x) is as
large as possible.

b. Suppose the oscillator is in the state constructed in (a) at ¢+ = 0. What
is the state vector for 7 > 0 in the Schrodinger picture? Evaluate the
expectation value (x) as a function of time for 7 > 0 using (i) the
Schrodinger picture and (ii) the Heisenberg picture.

c¢. Evaluate ((Ax)?) as a function of time using either picture.

a.
In Schrédinger picture

@) =ci|0)+cilt)
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a|X

=lc, | (0 >+|c1|2(1|f<|1>+c;c1<0|>‘<|1>+c0cf(l|>2|0>

/h
S (cc+cc)

c, =re”, c =re"

a)

or using the matrix,

A

Xa>:L(c0* Cl* R = L(CSCI+COCI*)
25 1 o)c) V2mo

lco|” +le |’ =1 = ri+r’=1

(a

(ri, &: real numbers) o =cos @, I =sin ¢,

r r [e'(‘91 &) +e -i(6, ‘90)]
V M
—‘/ 2rrcos(9 -0)
2m
[ h .
= sin(2¢)cos(6, — 6,)
2Mmae

The maximum of <X> is given when

sin(2¢) =1, cos(d, —6,) =1
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(3) = (O Tatt)

~ (0 )

x>

X

1)+e"(1

coswt

2mow

In the Heisenberg picture

(x) = <a(0)|*H|a<0)>

= <a|[xoos ot j|a>
= 12< j(xeosa)t+mi)sinwtj(%|0>+%|l>}
h
= cos wt
2mae
Note:
o h A, A+ 52 h A, A+\2 h A2 | A+2 AYA 1
=T =— =— 1
X 2ma)(a+a ) X 2ma)(a+a ) 2ma)(a +a +2a'a+1)
(0[]1) =0 (0]g*[1)=0
(1]%/0) =0 (1%%|0)
(0}xj0)=0 (0|%2[0) % 0
(1%1)=0 (1%2[1) =0
C.

In Schrddinger picture, we calculate

Then
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= f (1+sin’ ot)
2Mme

1. 3.
)iz(ezlwt|0> 4 ezlmt|l>j

1)+e'(l

falat) - [0l

o2

R 2

%2 2/0))

0)+(1

1)+e"*(0

)
)

l fi
22mw

(1+3)=—E—
mae

((2-17))
17. Show for the one-dimensional simple harmonic oscillator

(0le***0) = exp[ — k%(0]x2|0) /2],

where x is the position operator.

(0[e™[0) = Jax{o|x)(x[e"0)

= J'dx'e“‘x' (x'|0)‘2
1 1K' 1 sz
= Idxe X e exp(—EJ

] ] ikx, )* k2
= |dX'——exp| - —| X'——% | ——X;
I 7%, p[ xj( 2 ] 4 0}

where
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2 X

' 1 Xv2
<X |0> = Ay eXp(_ 2X§)

0

((2-20))
20. Consider a particle of mass m subject to a one-dimensional potential of
the following form:

1
V= 'ikxz for x>0

o0 for x <0.

a. What is the ground-state energy?
b. What is the expectation value (x?) for the ground state?

(a)

The wave function for the simple harmonics has either an even parity or a odd parity.
Since the potential becomes infinity for Xx<0, the wave function should be zero at x — 0.
Thr odd function should be zero at x = 0, since y(—X) =—-(X), or (0)=-w(0).
Then we have the eigenfunction with the odd parity.

The wave function with the odd parity is |n> withn=1,3,5,7,......

The energy of the ground state is 7o (1 + %) = %ha)

(b)
Tx2|¢1|2dx Tx2|¢1|2dx
x*) =L =L =<1>?21>=2n": 3zzfnh
() @
I2|¢1|2dx I2|¢1|2dx
0 0
((2-21))
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21. A particle in one dimension is trapped between two rigid walls:

_ /0, forO0<x<L
V(x)=
o, Jorxsl, a»l,

At ¢ =0 it is known to be exactly at x = L /2 with certainty. What are
the relative probabilities for the particle to be found in various energy
eigenstates? Write down the wave function for 7> 0. (You need not
worry about absolute normalization, convergence, and other mathemati-
cal subtleties.)

lw(t=0))=|x=L/2)

_ 2 g
o= | 2 sin %)
with
E _h_z(”_”)z
" oaml L
[w(O) =exp(- = Dlx= L/2) = T exp(-= Do, g, x= L12)

Iint)m)con*(x =L/2)=2a,0)e,)

lw(t) =D exp(—

where

iEt . 2 iE t
n X=L/2)= = exp(——2
h )9, ( ) L xp( h

a, (t) = exp(— )sin(%ﬂ)

Note that a, = 0, when n is even.

((2-22)
22. Consider a particle in one dimension bound to a fixed center by a
d-function potential of the form
V(x)=—=uv,8(x), (v, realand positive).

Find the wave function and the binding energy of the ground state. Are
there excited bound states?
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- S_d—zy/(x) Voo (X (X) = Ew(X)
m dx

I (0~ % (0w (I = [Ew(x)K
J 2madx i
or

The right-hand side is equal to zero in the limit of &—0

n d
L Z () L= v (0
o dxl//( ) 2= Vow (0)

This is the boundary condition.

We consider the case of E<0. For x>0 and x<0, we have

d’? 2mE 2mlE]| )
—y(X)=- X)=—F7—W(X)= X
OIX2'//() e w(X) e w(X) = pw(X)
where

_[2mlE]
pP= hz

w(X) has the form,
w(X) = Ae ™" for x>0.
w(X) = Be”™ for x<0.

The potential is symmetric with respect to X = 0. Thus the wave function should be even
function or odd function.

(i) The wave function is even function.
w(X) = Ae ™ for x>0.

w(X) = Ae”™ for x<0.
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— (A — Age ) =V, A
2m

or
hZ
A[Epe_pg —Vo]=0

or in the limit of &—0

h2
A(—p-Vv,)=0
(mp )
When AZ£0,

2m|E| mv,
PN TR
or

2

SRR

2h

The normalized wave function is

w(x)=pe "
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There is no excited bound state.

(i1) The wave function is odd function.
w(X) = Ae ™™ for x>0.
w(X) =—Ae” for x<0.

2
(A A ) =,

or in the limit of &—0
A=0.

So there is no solution.

((2-23))

23. A particle of mass m in one dimension is bound to a fixed center by an
attractive §-function potential:

V(x)=-A8(x), (A>0).

At t = 0, the potential is suddenly switched off (that is, V' =0 for ¢ > 0).
Find the wave function for ¢ > 0. (Be quantitative! But you need not
attempt to evaluate an integral that may appear.)

(a)

Schrodinger equation

h2 d2
_%Ww(x) — A8(X)w(X) = Ew(X)

ipx

v =(cl) = [{x]) Pl ) = [ £ (plv)cp

Here we note that
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Thus we have

p’ w(0)
%<p|‘//>—ﬁﬁ— E(p|v)

or

—Ap(0) 1
2
Vamh o Pt
2m

w(p)=(ply)=

When E is negative, w(p) will not diverge.

We now consider the time evolution operator.
A2

U (t) = exp(——Ht) = exp(—;;—m

w®) =U®ly(t=0)) = exp(——0ly) = [| p)(plexp(~——ly)dp

_ _ip _~Ay(0) ip 1
= Jexp(=—— 0] p)(plw)dp = N [ p)dpexp( Mmt)E_p2
2m
Then we have
(X[y) =— "’(O) I X p) dpexp(———t) >
" om
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|px i

a0 ‘%zm Y
= d
\/27Z'h I p2 P
C2m

((2-28))

28. Derive (2516) and obtain the three-dimensional generalization of
(2.5.16).

{Kly () =l w () = [dx IO IxXx ()

K652, ) = (UG 0) = (xlexpl-1 At )x)
or

(xly(0) = [dx KOt Xl )

K(x, t; X’, t’) is referred to the propagator (kernel)

For the free particle, the propagator is given by

i _v')2
K(X,EX 1) = [——0— exp[mX Xv)]
2An(t—t) P ot —t)

Let’s give a proof for this.

H is the Hamiltonian of the free particle.

(Xlk) _ ﬁ gk

HIK) = EJK)
with
21,2
E = hk ) @y :E
2m h
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K(x,t;x',t") = <X|exp[—% H(t—t)[x)
- jdk<x|k><k|exp[—% H(t-t)|x)

= ak{x{ ) expl="2% -t x)

_ Idkiexp[ik(x— X)— iz'r‘nz (t—t)]
Note that
and

[ dkexp(-iak®) :J_i
2 ia
m im(x — x')?
K(x,t;x',t') = - [
X = e —t) P ot |

Probability amplitude that a particle initially at X’ propagates to x in the interval t-t’.

or

This expression is generalized to that for the three dimension.

- 12
m mir—r
K(rt Pt ) = [———T]"" exp[o— L Ir—rl

27ih(t—t) 2h(t—t‘)]

((2-30)) _

30. The propagator in momentum space analogous to (2.5.26) is given by
(p”, tlp, ty). Derive an explicit expression for {p”, t|p’, t,) for the free-
particle case.

The propagator in the momentum space is defined by
1 i . 1 \J
K(p.t;p t)= <I0|6Xp[—; H(t-t)1p?

with
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n p2
Hlp) = —
Ip) 2mI|0>

K(p.t9 ) = expl—E ) = expr = 15p - p)
(2-31)
L=y —lmaoozx2
2 2
d A a
a(g) = (g) =0
X = —a)ozx

X"= Acos o,t"+Bcos w,t"

Initial conditions

X = Acosw,t + Bsinat
and
X'= Acosa,t' +Bsin ot
A and B are determined from the above two equations.

_ X'sin[w,(t —t")] - xsin[@, (t —t")]
- sinfo,(t—1')]

n

—X' @, cos[m(t —1")] + X@, cos[w,(t'—1")]
sin[a,(t—1')]

).(H:

. m 1
L(X", X",t") — Exvﬂ_zma)ozxvﬂ

2
Mma,

- 2sin’[w, (t —t")]
+ X7 cos[2a, (t —t")]+ X cos[a, (t'-t")])

[-2xX'cos[@, (T ++t'-2t")
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ma,
2sinf[w, (t —t'))

Sy = [ L(t")dt"= [(x” + X7 ) cos {a,(t —t')} —2xX ]

Kt X, = Aexp[ésd]

ima,
expl———
2hsin[w, (t —1'")]

[(X* + X ) cos{m, (t —t")} —2xx']]

In the limit of t —t'— 0, we have

imo,
2hsin{w, (t—1)}

K(x,t,x',t") = Aexp[ x=x")]

To find A, we use the fact that as t —t'— 0, K must tend to Ax-X")

N 1 (x=x")?
O(X=Xx)= &%W expl-——5"1
In other words
1 1 Ma,
N E VY )
(mA°) A" 2ihsin{w,(t-1)}

So we get

A :J2ihsin{a)o(t -t)}

ma,

1 Mo,
A= 2N1/2 . . )
(mA7) 2nhisin{w,(t -t )}
or

K(x,t,x',t")

Mma, ima, s o o '
- \/Zﬁhl sin{a)o (t —t')} eXp[Zh Sin[a)o (t _tv)] [(X +X )COS{Q)O (t t )} 2XX ]]
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