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Using the Mathematica, we derive the formula of the commutation relations related to the
momentum and position operators. We use two types of differential operators;
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The detail of the formula will be discussed later.

1. Commutation relations between p and X
We start with the commutation relation

[%, p]=ind.
Then we have
[X, p*1= P[X, P1+[X, P1P = 2inp.

Here we use the formula;

or

Here we use

[A B%]=[A B]B? + B[A B]B + B’[A, B].
More generally, let us show that

[X, p"]=iAnp"".

If we assume that this equation is verified, we obtain
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n+1

[X, P
Suppose that f (p) is described by a series expansion,
f(p)=> a,p"
Then we have

[X f(M]=[%D a,p"1=> a,X p'l=in) na,p"",

or

[X, f(p)]=iAf"(p).
(b)
Similarly

h
i

x>

[P, %2]1=R[P, KJ+[P, KIX = 2

[B. F (1= '(R).
(©) More general cases ((Messiah))

[%, p*f (R)]=[X, p*1f (X) + P°[X, f (X)]
=[X, p*1f (X)
— in2pf (R)

[X, pf (X) 1 =[X, B1F (X) b + PIX, f (X) ]
=[X pIf () P+ p(X f()]p+ F (X)X P
=[X pIf (X) b+ pf (X)X, p]
=in[f(X)p+ pf (X)]
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[X f () P°T=[X f(RIP* + F(R[X p°]

= F(RIX, p’]
= 2iaf (X)p

(d)

In the same way

[B. p*f(%)]= [A “Z]f(X)+ “[p, (%]

[P, BF () B1 = [, BF (V1P -+ Bf (LB, p]
=[p.pf (%1
= ([, B1F () + PILP. f (D
=Pt (®)p

[B, f(X)P°1=[P. f(X)PIp+ f (X)PLP, Pl
=[p. f(X)pIp
= ([P, f(O1p+ (XD, PD P
=[p, f (X)1p°

ARy

2. Commutation relations of operators
The commutator of two operators A and B:

[A f(A)]=0,

[A, cl= 0, (c: number)
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[A,cB] = c[A B],

[AB+C]=[AB]+[AC],

[A, BC]=[A B]C + B[AC],

[AB,C]=[AC]B+A[B,C],

[A[B,C1]1+[B.IC, All+[C,[A B]] =0,

[A,B?]=[A, B]B + B[A,B],

[A B%]=[A, B]B? + B[A B]B + B[A, B],

[A B*]=[A B]B®+ B[A B]B? + B’[A, B]B + BY[A, B],

[A B°]=[A,B]B® + B[A B]B* + B’[A B]B® + B’[A, B]B? + B*[A B]B + B°[A,B].
When [B,[A,B]]=0,

[A B"]=nB"[A B].
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3. Baker-Hausdorff Lemma

This theorem is named for Henry Frederick Baker, John Edward Campbell, and Felix
Hausdorff. It was first noted in print by Campbell (1897); elaborated by Henri Poincaré
(1899) and Baker (1902); and systematized geometrically, and linked to the Jacobi
identity by Hausdorff (1906).1"

http://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff formu
la

The operator:

f(x)= exp(Ax)éexp(—Z\x) :
can be expanded as

f (x) = exp(Ax) B exp(~Ax) = B +%[A, B] +§[A,[A, B]] +§[A, [A[A B]]] +...
We can prove this by using a Taylor expansion of f(x)as

f(x)_f(0)+ f(”(O) f‘2>(0)+ f(3)(0)+

(%) = Aexp(Ax)Bexp(-Ax) — exp(Ax)Bexp(~Ax) A =[A, f (x)],
£(x) =[A, (3],
f90) =[A FPMX)].
In general,
fOx) =[A, f"(x)].
From these relations we have
f(0)=B,
£'(0)=[A, f(0)]=[AB],

(0) =[A £(0)] =[A[A.B]],
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@) =[A f@(0)]=[A[A[ABII,

£@0)=[A fO0)]=[A[A[AI[A B,

Therefore, we get

4

00=8+ X[AB]+ X [ALABI+ % [AIATA BN+ % [AIAALA 81N+ ...
When

[A[AB]]=0,

f(x) =B+ X[A B].
((Theorem))
When [A,[A B]]=0,

f () = exp(AX)B exp(—AX) = B +%[A, B].

4. Baker-Campbell-Hausdorff (BCH) theorem
If the commutator of two operators A and B commutes with each of them (A and

One has an identity
exp(A+ é) = exp(A) exp(é) exp(—%[,&, I§]) . (BCH theorem)

((Proof by Glauber)) Glauber (Messiah, Quantum Mechanics p.422)

f (x) = exp(Ax) exp(Bx)
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ar(x) _ Aexp(Ax) exp(Bx) + exp(Ax)Bexp(BX)

= (A + exp(Ax) B exp(— Ax)) exp(,&x) exp(éx)
= (A + exp(Ax) B exp(—Ax)) f(x)

Since
[A[ABII=0,
[B.[ABII=0,
exp(Ax)éexp(—Ax) =B+ [A, I§]x. (BCH Theorem)

Then

ar(x) _ (A+B +[A B]X) f (%)
dx

with f(x=0)=1.

Since the operators A+B and [A, I§] commute, they can be considered as quantities of
ordinary algebra

J'%df :'[(A+ B +[A, BIx)dx,

or
~ A~ X2 ~ ~
In(f)=(A+ B)x+?[A, B],
or
N ~ X2 ~ A~
f (x) = exp[(A+ B)x] exp(?[A, B]).
5. Example

Creation operator a* and annihilation operator a
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A

D,=cd" -4,

where « is a complex number.

A=ca", B=-aa,
[AB]=[cd" —~a"a] =|of'[4,4]=af,
[A,[A B]]=0 and [B,[A B]]=0.

Then we have

exp(D,) = exp(ad’ — a"4) = exp(cA* ) exp(—ca) exp(—%|a|2) :

6. Commutation relations in the position basis and momentum basis

(@) Momentum operator in the position basis
We start with

" h o h o
<X|p|‘//> :T&<X|V/> Zi—&w(x).

2= ()= [1) 2
(x[p%y) =1 ax(lelv/)—(ij Sov 00,

on ap R ho, s
(x|%B — ply) = x(x| plw) — == (x|Xly)

ho h o
= XT&V/(X) —T&[Xl//(x)]

=iny(X)

In general,
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(X[, B"Tw) = (x|(3"p" — P"R")|w)
:xn@ o w(x)—@ O Xy (0]

i) ox" ox"

(b) Position operator in the momentum basis
We start with

A .. 0 .. 0
(p[Xw)= 'h%<p|l//>— 'ha—plﬂ(p)-
Then we have

- ho, . nY o2
(p[% |W>:T%<p|x|‘ﬂ>:(7j V()

m

op"

an m _(ix\' M
ap”[p w(p)1-(in)" p

= (in)’

w(p)

7. Schrodinger equation in the position basis
Suppose that the Hamiltonian H is given by

H=1p2+v(R).
2m
Eigenvalue problem for the stationary energy eigen state is described by
Hly)=Elp).

In the |x> representation, the above equation can be written by the Schrodinger equation

for the wave function y/(x) = (x|y),

(Al = o B4V Rl = Ew)
m
or

h? o?
oS () +V OOy = E(xlw)
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or simply

2 2
O VW) =Ew(x). (Schrodinger equation)
2m ox
8. Wave function in the momentum basis

Next we consider the special case: Schrodinger equation in the free particles. The
Hamiltonian of the free particle is given by

~ 1
H,=—p°.
0 Zmp

| p) is the eigenstate of with the energy eigenvalue

Note that
. 1. 1
Ho|p>=ﬁp2|p>=—p2|p>-

Inthe |x) representation,

([ p) = (x| 5[ p)
-2 2 xin)
~E(x/p)

-2 (xlp)
or
.

(S + Kk =0,

where
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1
E=2  p=nk, [p)=—lK).

and the wave function is actually the transformation function,

8.

exp(i%x , or (x[k) = iexp(ikx) .

1
e~ o “ Vo

Commutation relations (formula)
[p, f (X)] = —inf" (%),

[X, f(P)]=inf'(p),

- ia . ia .

[X, e><|0(; p)]=-a exp(; p),

[%, p* f (P)] = 2inpf (B) +inp*f'(H),
[%, p* £ (§)]=2inpf (X),

[X, pf (X) p] =if (X) p +i7pf (X),

~
Rel

f(%)p*]1=2inf ()P,

[P, p*f(G)]=-inp*f'(4),

[B, pf (%) p]=—inpf'(X) P,

[P, f(X)p*1=—inf'(X)p*,

[p?,%%] = —4inkp — 2h%1,

[p% %3] =—18K%Rp — 9ikR*p? + 6in°L.

Mathematica (1): momentum operator

By using the Mathematica, we calculate the commutation relation
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f(n,m) = (x|3"p" - p"%"|y)
=X"p"[y ()]~ p"[X"y (X)]

Ne AL hyo" o
- (T) o ‘”(X)‘(Tj oV

with

where y(x) =(x|y) is an arbitrary function of x.

((Mathematica))
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| B

Clear["Global "+"]; p:= - D[#, X] &;

B

f[n_, m ] :=Nest[p, X"¢¥[x], n] -x" Nest[p, ¥[x], n] // Simplify;

f[1, 1]
-1 hY[X]

f[2, 1]
~2 1%y [x]
f[3, 1]
31 8%y [X]
f[4, 1]

4an*y® [x]

£[100, 1]

f[1, 2]
-2 1 Xhy[X]

f[2, 2]
—20% (YIX] +2x ¥ [X])

f[3, 2]
61 h° (¢ [x] + Xy [X])

T[4, 2]

ant (3y"[x] +2xy® [x])
f[1, 3]

“3ix%AyY[X]

f[2, 3]
~6x B (Y[X] +x ¥ [X])

f[3, 3]
3ih% (2U[x] +3X (29 [X] +x ¥ [X]))

T[4, 3]
120 (29 [x] +x (3¢ [x] +x ¢ [x]))
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10. Mathematica (1): position operator

By using the Mathematica, we calculate the commutation relation

f(n,m)=(x"p" - p"x")w(p) =x"[p"w(p)]- p"[X"w(p)].

with

x:ihi,
op

where w(p) is an arbitrary function of x.

((Mathematica))

Position oprator in quantum mechanics;

Clear["Global +"]; x :=1aD[#, p] &;
f[n_, m_] := Nest[x, p" ¥[p], n] -p" Nest[x, ¥[pl, n]//
Simplify;

f[1, 1]
ihy[p]
f[2, 1]
-2n%y [p]
f[3, 1]
-31in% Y [p]
T[4, 1]
4an*y® [p]
f[100, 1]

100 thO w(gg) p]

f[1, 2]
2iphay[p]
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f[2, 2]

-2n0 (y[p] +2p ¥ [p])
f[3, 2]

-6in° (V' [p] +pu’Ip])
f[4, 2]

an* (3¢ [p)1+2pu®[p])
f[1, 3]

3ip°ny(p]

f[2, 3]

-6pn° ([p] +p Y p])
f[5, 5]

5in° (24y[p] +5p (24y [p] +p (24y”[p] +8py™ (p] +p* 4@ p1)))

X[EXp[iﬁﬂ] vipl| - EXp[iZa] x[¥[p1] // Simplify
iap
-ae 2 Y[p]
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