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Magic number 

In nuclear physics, a magic number is a number of nucleus (either protons or neutrons, 

separately) such that they are arranged into complete shells within atomic nucleus. As a result, 

atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei. 

The seven most widely recognized magnetic numbers are 2, 8, 20, 28, 50, 82, and 102. For protons, 

this corresponds to the elements such as helium, oxygen, nickel, tin, lead, although 126 is so far 

only known to be a magic number for neutrons. Atomic nuclei consisting of such a magic number 

of nucleons have a higher average binding energy per nucleon than one would expect based 

predictions such as the semi-empirical mass formula and are hence more stable against nuclear 

decay. Nuclei which have neutron number and proton number each equal to one of the magic 

numbers are called "doubly magic." 
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1. Overview 

The binding energy of atoms and isotopes as a function of atomic number is arguably the most 

important curve in science, responsible for our very existence and potentially our extinction as 

well. Moreover, it is the potential solution to many of the world’s energy and environmental 

problems. In order to understand such problems, the nuclear shell model is a theoretical model that 

describes the structure of atomic nuclei in terms of energy levels occupied by protons and neutrons. 

One of the key features of the model is the concept of "magic numbers," (Maria G. Mayer), which 

are certain numbers of protons or neutrons that correspond to particularly stable configurations of 

nuclear matter. The magic numbers are 2, 8, 20, 28, 50, 82, and 126. These numbers represent the 

number of protons or neutrons that fill complete shells in the nucleus. For example, oxygen 16 has 

eight protons and eight neutrons (doubly magic), which corresponds to a complete shell of eight 

protons and eight neutrons. The magic numbers arise because of the way protons and neutrons 

interact with each other through the strong nuclear force, which binds the nucleus together. The 

strong force has a limited range, and it is most effective at short distances. As a result, the protons 

and neutrons in the nucleus tend to occupy discrete energy levels that are determined by the 

geometry of the nuclear potential well. When a shell is completely filled with protons or neutrons, 

the nucleus becomes particularly stable because the particles are less likely to interact with each 

other in ways that would disrupt the binding energy of the nucleus. This stability gives rise to the 

magic numbers and explains why nuclei with magnetic numbers tend to be more stable and have 

higher binding energies than nuclei with other numbers of protons and neutrons. 

According to the Bohr's model, the velocity of electron in the ground state of the hydrogen-

like atom with the atomic number Z is predicted as 
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where  is the fine structure constant, 
1

137.0360
  . Since v c  (relativity), the value of Z 

should be lower than 137Z  . On the other hand, the number of neutrons for many heavy elements 

can be larger than this value: N Z . For the stable elements with small atomic mass A, the number 

of protons (atomic number) Z is equal to the number of neutrons N; A Z N  . Iron (Fe)-56 is a 

strongly and effectively bound nucleus, having a binding energy of 8.8 MeV per nucleon. The 

binding energy per nucleus vs A shows a maximum at the value of A for Fe. One can expect a 

fusion for lower than the value of A for Fe, and a fission for higher than the value of A for Fe. The 

binding energy of elements is different depending on the kinds of elements.  

There are so many excellent books and articles which discuss the binding energy of atoms. 

These show that the binding energy of atoms as a function atomic mass A takes a maximum around 

the atomic mass of iron. Here we evaluate the binding energy of all elements and their isotopes 

based on the NIST atomic weight of all elements and isotopes (the latest version of data) with the 

use of Mathematica, although the binding energy per nucleus as a function of atomic mass A is 

seen in many standard textbooks in atomic and nuclear physics. We will also compare the 

experimental values of the binding energy with the theoretical prediction from the liquid drop 

model. It is clearly seen that the difference between these shows local maxima as a function of the 

number of neutrons, at the magic numbers of neutron numbers, N = 2, 8, 20, 28, 50, 82, and 126. 

The binding energy per nucleus of atoms and their isotopes as a function of A are explained in 

terms of several models, including the following models. 

 

1. Fermi gas model 

2. Liquid droplet model (George Gamov, Niels Bohr, John Wheeler) 

3. Spin-orbit interaction (Clebsch-Gordan coefficient) 

 

((Maria G. Mayer)) 

 



 
 

Picture of Prof. Maria Goeppert Mayer 

 

Maria Goeppert Mayer (June 28, 1906 – February 20, 1972) was a German-born American 

theoretical physicist, and Nobel laureate in Physics for proposing the nuclear shell model of the 

atomic nucleus. She was the second woman to win a Nobel Prize in physics, the first being Marie 

Curie. In 1986, the Maria Goeppert-Mayer Award for early-career women physicists was 

established in her honor.  

A graduate of the University of Göttingen, Goeppert Mayer wrote her doctoral thesis on the 

theory of possible two-photon absorption by atoms. At the time, the chances of experimentally 

verifying her thesis seemed remote, but the development of the laser in the 1960s later permitted 

this. Today, the unit for the two-photon absorption cross section is named the Goeppert Mayer 

(GM) unit. 

https://en.wikipedia.org/wiki/Maria_Goeppert_Mayer 

 

((George Gamov)) 

 



 
 

Picture of Prof. George Gamov 

 

George Gamow (March 4, 1904 – August 19, 1968), was a Russian-born American polymath, 

theoretical physicist and cosmologist. He was an early advocate and developer of Big Bang theory. 

He discovered a theoretical explanation of alpha decay by quantum tunneling, invented the liquid 

drop model and the first mathematical model of the atomic nucleus, and worked on radioactive 

decay, star formation, stellar nucleosynthesis and Big Bang nucleosynthesis (which he collectively 

called nucleocosmogenesis), and molecular genetics. 

https://en.wikipedia.org/wiki/George_Gamow 

 

2. Typical examples of atomic elements  with magic number 

(a) He (Helium) 

A = 4, Z = 2, N = 2 

The number of neutrons (2) and protons (2) is the magic number. It is doubly magic. 

 



 
 

(b) O (Oxygen)  

A = 16, Z = 8, N = 8 

The number of neutrons (8) and protons (8) is the magic number. It is doubly magic. 

 

 
 

(c) Ca (Calcium)  

A = 40, Z = 20, N = 20 

The number of neutrons (20) and protons (20) is the magic number. It is doubly magic. 

 

 
 

(d) Ni (Nickel) 

A = 59, Z= 28, N = 31 

The number of proton (28) is the magic number. 

 

 
 



(e) Sn (tin) 

A = 119, Z = 50, N = 69 

The number of proton (50) is the magic number. 

 

 
 

(f) Pb (lead) 

A = 208, Z = 82, N = 126 

The number of neutrons (126) and protons (82) is the magic number 

 
 

3. The atomic number Z 

Why does Z stand for the atomic number? Why does A stand for mass number instead of atomic 

number? We learn from the Wikipedia that the letter Z denotes “Zahl (number in English), which, 

before the modern synthesis of ideas from chemistry and physics, merely denoted an element's 

numerical place in the periodic table, whose order was then approximately, but not completely, 

consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion 



and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, 

did the word Atomzahl (and its English equivalent atomic number) come into common use in this 

context.  

https://en.wikipedia.org/wiki/Atomic_number 

 

The atomic number or proton number (symbol Z) of a chemical element is the number of 

protons found in the nucleus of every atom of that element. The atomic number uniquely identifies 

a chemical element. It is identical to the charge number of the nucleus. In an uncharged atom, the 

atomic number is also equal to the number of electrons. The sum of the atomic number Z and the 

number of neutrons N gives the mass number A of an atom. 

 

A Z N  . 

 

Since protons and neutrons have approximately the same mass (and the mass of the electrons is 

negligible for many purposes) and the mass defect of nucleon binding is always small compared 

to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units 

(making a quantity called the "relative isotopic mass"), is within 1% of the whole number A.  

Atoms with the same atomic number but different neutron numbers, and hence different mass 

numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements 

exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an 

isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, 

determines the element's standard atomic weight. Historically, it was these atomic weights of 

elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th 

century.  

 

Each element can be represented by the notation A

Z X , where A, the mass number, is the sum 

of the number of protons and the number of neutrons, and Z, the atomic number, is the number of 

protons. The protons and neutrons that make up the nucleus of an atom are called nucleons, and 

an atom with a particular number of protons and neutrons is called a nuclide. Nuclides with the 

same number of protons but different numbers of neutrons are called isotopes. Isotopes can also 

be represented by an alternative notation that uses the name of the element followed by the mass 

number, such as carbon-12. 

 

4. Formula of binding energy 

We make a plot of the binding energy per nucleus for each element as a function of the atomic 

number A. The value of the binding energy per nucleus can be evaluated using the formula. 

 

1 2( ) 1
[  ( )  ( )]B

n

E atom
Z m H N m M atom c

A A
   , 

 



with 

 

A Z N  . 

 

In Table-1 (APPENDIX-A), we show the values of A, Z, N, M, the experimental binding energy 

( ) /BE atom A and the theoretical binding energy for each element, are listed. 

 

A:  atomic mass 

Z:  number of protons (atomic number) 

N: number of neutrons 

 

We use the following data, which are obtained from NIST web site. 

 

c = 2.99792458 x 108 m   (speed of light) 

 

Ry=13.60569312299426 eV   (Rydberg unit of energy) 

 

8

2
1.46063 10  

Ry
u

c

   

 
271.66053906660 10  kgu     (atomic mass unit) 

 

0.0005485799007 
e

m u    (mass of electron) 

 

1.007276466 pm u     (mass of proton) 

 

1.00866491595 
n

m u    (mass of neutron) 

 

2.015941382 p nm m u   

 

1.007825046 p em m u   

 
1( H) 1.00782503223 m u    (mass of hydrogen atom) 

 
2( D) 2.01410177812 m u    (mass of deuterium) 

 
3( T) 3.0160492779 m u    (mass of tritium) 

 



5. Binding energy for hydrogen atom 
1H   

It is well known that the binding energy of hydrogen atom is  

 

BE  Ry=13.60569312299426 eV  for 
1H , 

 

where Ry is the Rydberg unit of energy. The hydrogen atom consists of one proton and one electron. 

So, the mass of hydrogen atom is given by 
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taking into account of the binding energy (Ry). This value of 
H

m  is in good agreement with that 

reported by NIST; 

 
1( H) 1.00782503223 m u . 

 

6. Binding energy for Deuterium 
2D  

Deuterium consists of one proton, one neutron and one electron. Using Eq.(1), the binding 

energy of deuterium is evaluated as 

 
2 2

[1 1 ( D)]

2.22458 MeV

B P nE m m m c  


 

 

or 

 
1 2 2

[1 ( H) 1 ( D)]

2.22457 MeV

B nE m m m c  


 

 

where 2( D)m  is the molecular mass of deuterium 

 
2( D) 2.01410177812 m u  

 

These values of BE  are the same. Hereafter, we use the latter value of EB to evaluate the binding 

energy. The binding energy per nucleus is 

 



2.22457 MeV
1.11228 MeV

2

BE

A
   for 

2 D . 

 

7. Binding energy for tritium 
3T   

Deuterium consists of one proton, one neutron and one electron. The binding energy of 

deuterium is  

 
1 3 2

[1 ( H) 2 ( T)]

8.4818 MeV

B nE m m m c  


 

 

where 3( T)m  is the mass of tritium 
3T ,  

 
3( T) 3.0160492779 m u   

 

The binding energy per nucleus is 

 

8.4818 MeV
2.8272 MeV

3

BE

A
   for 

3T  

 

8. Binding energy for 3He  

Helium 3 consists of two protons, one neutron, and two electrons. The binding energy of 3 He  

is  

 
1 3 2

[2 ( H) ( He)]

7.71804 MeV

B nE m m m c  


 

 

where 3( He) 3.0160293201 m u  is the mass of 3 He . The binding energy per nucleus is 

 

7.71804 MeV
2.57268 MeV

3

BE

A
   for 3 He . 

 

9. Binding energy for 4 He  

Helium 4 consists of two proton, two neutrons and two electrons. The binding energy of 4 He  

is  

 
1 4 2

[2 ( H) 2 ( He)]

28.2957 MeV

B nE m m m c  


 

 



where 4( He) 4.00260325413 m u  is the mass of 4 He . The binding energy per nucleus is 

 

28.2957 MeV
7.07392 MeV

4

BE

A
   for 4 He . 

 

10. Binding energy for 
6Li  

6Li  consists of three proton, three neutrons and three electrons. The binding energy of 
6Li  is  

 
1 6 2

[3 ( H) 3 ( Li)]

31.994 MeV

B nE m m m c  


 

 

where 6( Li) 6.0151228874 m u  is the mass of
6Li . The binding energy per nucleus is 

 

31.994 MeV
5.33233 MeV

6

BE

A
   for 

6Li . 

 

11. Binding energy for 
7Li  

7Li  consists of three proton, four neutrons and three electrons. The binding energy of 
7Li  is  

 
1 7 2

[3 ( H) 4 ( Li)]

39.2451 MeV

B nE m m m c  


 

 

where 7( Li) 7.0160034366 m u  is the mass of 
7Li . The binding energy per nucleus is 

 

39.2451 MeV
5.60644 MeV

7

BE

A
   for 

7Li . 

 

We note that the binding energy per nucleus of 4He is much larger than that of 
3T , 3 He , and 

7Li . 

 

12. The relation between Z vs N for experimental results and theory 

We start with the energy for the liquid drop model (the detail of this model will be discussed 

later).  
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with A Z N  . We evaluate 0BdE

dZ
  with A being hold constant. 
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leading the value of Z and N as a function of A, 
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and 
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with 

 

0.714
0.0307758

23.2

c

sy

a

a
    , from the liquid drop model. 

 

We make a plot of Z vs N by using the ParametricPlot of Mathematica, where A is changed as 

parameter.  

 



 
 

Fig.1  ParametricPlot (Mathematica) of Z vs N. Experimental results (denoted by red dots) 

based on NIST data. Theoretical curve (the liquid drop model, denoted by black 

line with 
0.714

0.0307758
23.2

c

sy

a

a
  ). 

 

As is expected, the experimental data of N vs A falls well on the theoretical curve denoted by black 

line. The curve is well described by the linear relation (N = Z) only for small Z (typically, Z<15). 

For Z>160, the experimental curve deviates from the theoretical curve. 

We consider the value of Z and N the limit of large A.  
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or 
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and  
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13. Binding energy of elements as a function of atomic number A: comparison between 

experimental values and theoretical values 

Using the second formula, we get the experimental values of the binding energy per nucleus. 

The data are denoted by red dots. We also show the theoretical prediction (semi-empirical mass 

formula). These are denoted by blue dots. The experimental results are in very good agreement 

with the semi-empirical mass formula in the region of large A (A>56)  

 

Table of the data from NIST and binding energy per nucleus 

 

1 2

exp

1
[  ( )  ( )]B

n

E
Z m H N m M atom c

A A
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, (in units of MeV) 
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a A a A a a Z N N Z

A A A A A
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 
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(in units of MeV) 

 

A: atomic mass number 

Z;  atomic number (nuclear charge number) 

N: number of neutrons 

M: atomic mass 

 

A Z N    

 



 
 

Fig.2 Binding energy/A as a function of the mass number A for all elements with 

1 300A  . A Z N  . N: the number of neutrons. Z: the atomic number (the 

number of protons). The data of A, Z, and N for each element are obtained from 

those collected by NIST Physical Measurement Laboratory. The binding energy /A 

(experimental results, red). 

 

The most obvious feature is that the plot of the binding energy /BE A  vs A is close to 8 MeV 

for almost all nuclei, with the maximum value of 8.790 MeV for iron ( 56 Fe ). Beyond iron, /BE A  

slopes gently down to about 7.570 MeV for 238 U ; this decrease is due to manly to the increasing 

importance of the Coulomb repulsion of the protons. On the other side of 56 Fe , when A decreases 

below about 20. of The binding energy /BE A  falls rapidly to zero for 
1H  (which has no binding 

energy); this decrease occurs because almost all nucleus in a small nucleus are close to the surface 

and the negative surface correction is proportionately large. 

 



 
 

Fig.3 Comparison between experimental results and theoretical prediction from the liquid 

droplet model. Binding energy/A as a function of the mass number A for all 

elements 1 300A  . A Z N  . N: the number of neutrons. Z: the atomic 

number (the number of protons). The data of A, Z, and N for each element are 

obtained from those collected by NIST Physical Measurement Laboratory. The 

binding energy /A (experimental results, red) and the theoretical prediction (the 

liquid drop model, blue). 

 

 



 

Fig.4 Binding energy per nucleon for the elements ( /BE A  ) with 1 25A  . The binding 

energy per nucleus is noticeably large for 4He, 12C, 16O, 20Ne, and 24Mg, indicating 

that these atoms are more stable among atoms. The liquid drop model (denoted by 

blue closed circles). 

 

 
 

Fig.5 Binding energy per nucleon ( /BE A ) vs A for the lightest elements for 1 15A  . 

Note that /
B

E A  tends to increase with increasing A for 1 4A  . 

 

One of the most important features of a nucleus is its average binding energy per nucleon. The 

quantity is plotted as a function of A in Figs.2 and 3. The points are the data obtained from the 

measured masses in the manner just described. Note that /
B

E A at first rises rapidly with increasing 

A, but very soon /
B

E A is roughly constant at a value 8 MeV. If each nucleon in a nucleus exerted 

the same attraction on all the other nucleons, the binding energy per nucleon would continue to 

increase as more and more nucleons were added to the nucleus; that is, /
B

E A would be 

proportional to A. The extremely important fact that /
B

E A is not proportional to A is due, in part, 

to the short range of nuclear forces.  

Note that /
B

E A  actually maximizes at about 8.7 MeV for 60A ∼ , and then decreases slowly 

to about 7.6 MeV for 240A ∼ . We shall find that the decrease is due to Coulomb repulsions 

between protons in the nucleus. One consequence is the phenomenon of nuclear fission, in which 



a large A nucleus, such as 92

238U , splits into two intermediate A nuclei because the two intermediate 

A nuclei are more stable than the large A nucleus. 

For lighter elements, the energy that can be released by assembling them from lighter elements 

decreases, and energy can be released when they fuse (fusion). This is true for nuclei lighter than 

iron/nickel. For heavier nuclei, more energy is needed to bind them, and that energy may be 

released by breaking them up into fragments (known as atomic fission). Nuclear power is 

generated at present by breaking up uranium nuclei in nuclear power reactors, and capturing the 

released energy as heat, which is converted to electricity. As a rule, very light elements can fuse 

comparatively easily, and very heavy elements can break up via fission very easily; elements in 

the middle are more stable and it is difficult to make them undergo either fusion or fission in an 

environment such as a laboratory. The reason the trend reverses after iron is the growing positive 

charge of the nuclei, which tends to force nuclei to break up. It is resisted by the strong nuclear 

interaction, which holds nucleons together. The electric force may be weaker than the strong 

nuclear force, but the strong force has a much more limited range: in an iron nucleus, each proton 

repels the other 25 protons, while the nuclear force only binds close neighbors. So, for larger nuclei, 

the electrostatic forces tend to dominate and the nucleus will tend over time to break up. 

As nuclei grow bigger still, this disruptive effect becomes steadily more significant. By the 

time polonium is reached (84 protons), nuclei can no longer accommodate their large positive 

charge, but emit their excess protons quite rapidly in the process of alpha radioactivity—the 

emission of helium nuclei, each containing two protons and two neutrons. (Helium nuclei are an 

especially stable combination.) Because of this process, nuclei with more than 94 protons are not 

found naturally on Earth (see periodic table). The isotopes beyond uranium (atomic number 92) 

with the longest half-lives are plutonium-244 (80 million years) and curium-247 (16 million years). 

 

 



 

Fig.6 The relation between Z (atomic number, number of protons) vs N (the number of 

neutrons) in nuclei. The linear relation of Z N  is denoted by blue line. It may be 

noticed that there is no element with number of neutrons between 126 and 133. 

A Z N  . 

 

 
 

 

Fig.7 The relation between Z (atomic number, number of protons) vs N (the number of 

neutrons) for elements. The points for 2D, 4He, 6Li, 10B, 12C, 14N, 16C, 20Ne, 24Mg, 
28Si, and 32S, 36Al, 40Ca are located on the linear relation Z N .  

 

 



 

Fig.8 The relation between Z (atomic number, number of protons) vs N (the number of 

neutrons) for elements. 

 

 
 

Fig.9  The plot of N vs Z for elements. The linear relation ( N Z ) is valid for small Z. 

 

((Note)) Radioactive decay 
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14. Fission and Fusion ((Eisberg and Resnick)) 

The Earth's inner core is thought to be slowly growing as the liquid outer core at the boundary 

with the inner core cools and solidifies due to the gradual cooling of the Earth's interior (about 

100 degrees Celsius per billion years). The iron crystallizes onto the inner core. The liquid just 

above it becomes enriched in oxygen, and therefore less dense than the rest of the outer core. This 

process creates convection currents in the outer core, which are thought to be the prime driver for 

the currents that create the Earth's magnetic field. The existence of the inner core also affects the 

dynamic motions of liquid in the outer core, and thus may help fix the magnetic field. 



Unlike the mineral-rich crust and mantle, the core is made almost entirely of metal—

specifically, iron and nickel. The shorthand used for the core's iron-nickel alloys is simply the 

elements' chemical symbols—NiFe. Elements that dissolve in iron, called siderophiles, are also 

found in the core. 

So that, the nuclear fusion occurs for the elements with A<56, while the nuclear fission 

occurs for the element with A>56. 

 

 
 

Fig.10  Plot of /BE A  versus A for elements. There are two regions of fission and fusion. 

 



 
 

Fig.11 Plot of /BE A  versus A for elements. There are two regions of fission and fusion 

The maximum of the binding energy per nucleus is the greatest for nuclei with a 

mass near 56Fe. Therefore, fusion of nuclei with mass numbers much less than 

that of Fe, and fission of nuclei with mass numbers greater than that of Fe, are 

exothermic processes. 

 

((Nuclear fission)) 

Use Fig.10 to estimate the difference between the binding energy of a 92

238U  nucleus and the 

sum of the binding energies of the two nuclei produced if it fissions symmetrically. The figure 
shows that the average binding energy per nucleon for a nucleus of mass number around A = 238 

is /
B

E A = 7.5697858 MeV. So, the binding energy of the nucleus present before the fission is 238 

x 7.5697858 MeV = 1801.6 MeV. The figure also shows that the average binding energy per 

nucleon for a nucleus of mass number around A = 238/2 = 119 (Sn) is /
B

E A 8.499056 MeV∼ . 

So, each of the two nuclei present after the symmetrical fission has a binding energy of 
B

E 

119 8.499056 MeV=1011.4 MeV∼ . The sum of their binding energies is 2022.8 MeV∼ . This 

sum is larger than the initial binding energy 1801.6 MeV by about 221.2 MeV. Thus, the final state 
(after the nucleus fissions) is more stable than the initial state (before the nucleus fissions), because 

the total binding energy is higher in the final state. When the total binding energy increases by 
about 221.2 MeV in the fission, energy in this amount is liberated. Most of it goes into the kinetic 

energy of the two nuclei produced in the fission. In a nuclear reactor this kinetic energy is degraded 
into thermal energy, which is the source of the power produced by the reactor. 

 
((Nuclear fusion)) 



In nuclear fusion two or more nuclei of very small A combine to form a larger nucleus that has 
a higher average binding energy per nucleon because its value of A is nearer the value A = 60, at 

which /
B

E A  maximizes. It might seem that only a few nuclei near A = 60 would be stable. This 

is not true because there are other factors, to be discussed later, which inhibit fission and fusion. 
We conclude this section by considering the distribution of Z and A values of the stable nuclei, 

which is additional information obtained from the mass spectrometer measurements.  
 

15. Fermi gas model 

The Fermi gas model is a theoretical model used to describe the behavior of a gas of non-

interacting fermions, such as protons and neutrons, under certain conditions. In the context of the 

liquid drop model of the atomic nucleus, the Fermi gas model is used to describe the distribution 

of protons and neutrons in the nucleus. 

In the Fermi gas model, the protons and neutrons are treated as if they are independent particles 

that move around inside the nucleus, subject to the nuclear potential well that confines them. 

Because protons and neutrons are fermions, they are subject to the Pauli exclusion principle, which 

states that no two fermions can occupy the same quantum state simultaneously. This leads to the 

Fermi-Dirac statistics, describing the distribution of particles in a system of non-interacting 

fermions. 

In the context of the nucleus, the Fermi gas model assumes that the protons and neutrons are 

distributed in energy levels that are determined by the nuclear potential well. The energy levels 

are filled according to the Fermi-Dirac distribution, which describes the probability of finding a 

particle in a given energy level. The model predicts that the distribution of protons and neutrons 

in the nucleus should be roughly uniform up to a certain energy level, known as the Fermi energy. 

Beyond this energy level, the distribution drops off rapidly. 

The Fermi gas is a simplified model that neglects many important effects, such as the strong 

interaction between protons and neutrons and the deformation of the nuclear shape. However, it 

provides a useful starting point for understanding the behaviors of protons and neutrons in the 

nucleus. and it forms the basis for more advanced models of nuclear structure. 

The Fermi energy in the liquid drop model of the atomic nucleus is a measure of the energy of 

the highest occupied state of the protons and neutrons in the nucleus. It is an important parameter 

in the Fermi gas model, which assumes that the protons and neutrons in the nucleus behave like a 

gas of non-interacting fermions. 

The value of the Fermi energy depends on the size of the nucleus and the number of protons 

and neutrons it contains. In general, the Fermi energy is on the order of few MeV for most nuclei. 

However, it can vary depending on the specific nucleus and its properties. 

It is important to note that the Fermi energy is a theoretical quantity and is not directly 

measurable. However, it is a useful parameter in the Fermi gas model and other models of nuclear 

structure. as it provides a way to describe the distribution of protons and neutrons in the nucleus. 

In the nuclear shell model, a square well potential is often used to represent the potential energy 

of nucleons (protons and neutrons) inside the nucleus. The depth of the potential well is an 

important parameter that affects the behavior of nucleons inside the nucleus. The depth of the 



potential well in the nuclear shell model can vary depending on the specific nucleus and its 

properties. However, typical values for the depth of the potential well are on the order of a few 

tens of MeV. For example, the depth of the potential well for a nucleus like oxygen-16 (which has 

8 protons and 8 neutrons) is estimated to be around 40 MeV. This depth is much larger than the 

typical kinetic energies of nucleons inside the nucleus, which are on the order of a few MeV. 

It is important to note that the square well potential is a simplification and does not capture all 

of the complexities of the nuclear potential. In reality, the potential energy of nucleons inside the 

nucleus is determined by the strong nuclear force, which is a complex and non-linear interaction 

between nucleons. However, the square well potential is a useful model that provides a way to 

describe the behavior of nucleons in the nucleus and to understand the properties of nuclear 

structure. 

The radius of proton and neutron in a nucleus depends on the specific nucleus and its properties. 

In general, the radius of a proton or neutron in a nucleus is much smaller than the radius of the 

nucleus itself. The typical size of a nucleus is around 1 femtometer (1fm = 10-15 m), and the size 

of a proton or neutron is on the order of 0.8 - 0.9 fm. This means that the protons and neutrons are 

packed tightly together in the nucleus, with very little empty space between them. 

It is important to note that the size of a proton or neutron in nucleus can vary depending on the 

specific nucleus and its properties. For example, in a nucleus with a large number of protons and 

neutrons, the nucleons (protons and neutrons) may be more spread out, leading to a slightly larger 

radius. Additionally, the size of a proton or neutron can also be affected by the nuclear force and 

other interactions between the nucleons in the nucleus. 

 

 
 



Fig.12 The packing of protons and neutrons in a nucleus. Nuclear shell model. Fermi gas 

model. 1/3 1/3

0 1.2  [fm]R r A A  . 
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The Fermi wave number is obtained as 
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which is independent of A. Thus, the Fermi energy is 
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where 
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Fig.13 The square-well potential energy of the nucleus. 33.4339 MeVFE  . . 

8.0 MeVBE  . The potential depth is 0 41.4 MeVEV E B    

 

16. Evaluation of de Broglie wavelength 

The de Broglie-wavelength evaluated as 

 

2

2 2
1.32141 fm

p p

h c

p m c m c

 
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ℏ ℏ
  

 

The energy of proton rest energy: 

 
2 938.272pm c   MeV, 197.327 MeVc ℏ . 

 

where 1 fm is a femtometer (10-15 m) or one fermi (after Enrico Fermi). This wavelength is within 

the typical range of nuclear dimensions, and is therefore reasonable to expect to localize nucleons 

of such energies within the nucleus. 



 

17. Woods-Saxon potential 

https://en.wikipedia.org/wiki/Woods%E2%80%93Saxon_potential 

The Woods–Saxon potential is a mean field potential for the nucleons (protons and neutrons) 

inside the atomic nucleus, which is used to describe approximately the forces applied on each 

nucleon, in the nuclear shell model for the structure of the nucleus. The potential is named after 

Roger D. Woods and David S. Saxon. The form of the potential, in terms of the distance r from 

the center of nucleus, is: 

 

0( )

1 exp( )

V
V r

r R

a

 



, 

 

where 0
V  (having dimension of energy) represents the potential well depth, a is a length 

representing the "surface thickness" of the nucleus, and 
1/3

0
R r A is the nuclear radius where r0 = 

1.25 fm and A is the mass number. Typical values for the parameters are: 0
50V   MeV, a ≈ 0.5 

fm. For large atomic number A this potential is similar to a potential well.  

 

 
 

Fig.14 Woods-Saxon potential for A = 50, relative to V0 (= 50 MeV) with a = 0.5 fm and 

R = 4.6 fm. 
1/3

0
R r A  with r0 = 1.25 fm. 

 

18.  Liquid droplet model: (prediction of binding energy of nucleus 

The liquid drop model of the atomic nucleus is a theoretical model that describes the properties 

of atomic nuclei in terms of a droplet of incompressible nuclear matter. The model includes several 

parameters that are used to calculate the binding energy of the nucleus, which is energy required 

to break the nucleus into its constituent protons and neutrons. 



The standard values of the parameters in the liquid drop model depend on the specific version 

of the model being used. However, here are some typical values for the parameters:  

 

1. Volume energy coefficient ( Va ): This parameter represents the contribution of the volume of 

the nucleus to its binding energy. Typical values of Va are around 15-17 MeV. 

2. Surface energy coefficient ( sa ): This parameter represents the contribution of the surface of 

the nucleus to its binding energy. Typical values for sa  are around 16-19 MeV. 

3. Coulomb energy coefficient ( ca ): This parameter represents the contribution of the 

electrostatic repulsion between protons in the nucleus to its binding energy. Typical values for 

ca  are around 0.7 - 1.2 MeV. 

4. Asymmetry energy coefficient ( sya ): This parameter represents the contribution of the 

difference in proton and neutron numbers to the binding energy. Typical values for sya  are 

around 22-24 MeV. 

5. Pairing energy ( pa ): This parameter represents the contribution of the pairing of nucleons 

with opposite spins to the binding energy. Typica; values for pa  are around -11 to -12 MeV. 

 

It is important to note that these values are not fixed and can vary depending on the specific 

version of the liquid drop model being used and the properties of the nucleus being studied. 

However, these typical values provide a starting point for understanding the parameters in the 

liquid drop model and their contributions to the binding energy of atomic nuclei. 

The formula represents the liquid drop model proposed by George Gamow, which can account 

for most of the terms in the formula and gives rough estimates for the values of the coefficients. It 

was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker and although 

refinements have been made to the coefficients over the years, the structure of the formula remains 

the same today. 

https://en.wikipedia.org/wiki/George_Gamow 
 

The liquid drop model is a model in nuclear physics which treats the nucleus as a drop of 

incompressible nuclear fluid first proposed by George Gamow and developed by Niels Bohr and 

John Archibald Wheeler. The fluid is made of nucleons (protons and neutrons), which are held 

together by the strong nuclear force. This is a crude model that does not explain all the properties 

of the nucleus, but It does explain the spherical shape of most nuclei. It also helps to predict the 

binding energy of the nucleus. The liquid drop model approximates the nucleus as a sphere with a 

uniform interior density, that abruptly drops to zero at its surface. The radius is proportional to 
1/3A ; the surface area is proportional to 

2/3A ; and the volume is proportional to A. Since the mass 

is also proportional to A , which is the number of nucleons in the nucleus 

 

The volume term 



This accounts for a binding energy proportional to the nuclear mass, or volume. The term 
describes the tendency to have the binding energy per nucleon a constant. Such a term would be 

present for a classical liquid drop. Because it is negative, it reduces the mass, and therefore 
increases the binding energy. 

 
The surface term 

It is a correction proportional to the surface area of the nucleus. Since the term is positive, it 
increases the mass and consequently reduces the binding energy. In a classical drop of liquid, this 

term would represent the effect of the surface tension energy. It would arise from the fact that a 
molecule at the surface of the drop feels attractive forces only from one side, so its binding energy 

is less than the binding energy of a molecule in the interior which feels attractive forces from all 
sides. Therefore, simply setting the total binding energy proportional to the volume of the drop 

overestimates the binding energy of the surface molecules, and a correction proportional to the 
number of such molecules, or to the surface area, must be made to reduce the binding energy. The 

same thing happens in a nucleus. 
 

The Coulomb term 
It accounts for the positive Coulomb energy of the charged nucleus, which is assumed to have 

a uniform charge distribution of radius proportional to 
1/3A . This effect of the Coulomb repulsions 

between the protons increases the mass and reduces the binding energy. A similar term would be 
present for a charged drop of a classical liquid. 

 
The asymmetry term 

It accounts for the observed tendency to have Z = N. Note that it is zero for Z = N = (A — Z), 
or 2Z = A, but is otherwise positive and increases with increasing departures from that condition. 

That is, the greater the departure from Z = N, the larger the mass or the smaller the binding energy.  
 

The pairing term 
The tendency of nuclei to have even Z and even N is accounted for by the pairing term. It 

decreases the mass if both Z and N are even, and increases it if both Z and N are odd. Thus, it 
maximizes the binding energy if both Z and N are even. A qualitative explanation of the origin of 

this term involves the quantum mechanical properties of indistinguishability of identical particles. 

Here we show the liquid drop model. This model was proposed by Gamov, Bohr, and Wheeler. 

The binding energy is predicted as a function of A, Z and N by a semiempirical mass formula 
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with 



 

15.75 MeVVa  , 17.8 MeVSa  , 

 

0.711 MeVCa  , 23.7 MeVsya  , 11.2 MeV  . 

 

The value of  is defined by 
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where 

 

Va A :   Volume term (dominant term), 

 
2/3

Sa A :  Surface term (the interaction of pairs), 

 

1/3

1
( 1)ca Z Z

A
  : Coulomb term, 
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( )sya Z N

A
  : Asymmetry term, 

 

1/2

1

A
 :  Pairing term. 

 

((Note)) 

 

16.8 MeVVa  , 18.3 MeVsa   

0.714 MeVca  , 23.2 MeVsya   

33.5 MeV   (e-e) 

0     for even-even 

0     for odd-odd 

0     for odd-even, or even-odd 

 

((Das)) 

 



15.6 MeVVa  , 16.8 MeVsa   

0.72 MeVca  , 23.3 MeVsya   

34.0 MeV   (e-e) 

0     for even-even 

0     for odd-odd 

0     for odd-even, or even-odd 

 

((Evaluation of the energy separation)) 

 

 
 

Fig.15 Spin-up state (red) and spin-down state (blue) for both protons and neutrons. 

2

A
Z N  . 

2

A
x   (Pauli's exclusion principle). 

 

Suppose that the number of neutrons is equal to that of proton in a nucleus; / 2A . The Fermi 

energy of this system is roughly evaluated as 
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or 

 

FE

A
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((Asymmetric term)) 

 

 
 

Fig.16 Antisymmetric effect. N Z . There are two states for each state (Pauli exclusion 

principle). 

 



2

2

1(2 ) 2(2 ) 3(2 ) ... (2 )

2 (1 2 3 ... )

1
2 ( 1)

2

( 1)

( )
4

totE x

x

x x

x x

x

N Z

    










    

    

 

 



 

 

 

where  
1

( )
2

x N Z  . 

 

So that, we have 
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((Nuclear force))  

For the atomic mass ( )A N Z  , the number of pairs for nucleus (neutron and proton) is 

evaluated as 
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1
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2
A P A A  . 

 

If the nuclear forces between any two nucleus were independently of the presence of other nucleus, 

the binding energy per nucleus is estimated as 
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((Surface term)) 

The surface term is assumed to be proportional to the surface area ( 24 R ). Note that the 

nuclear radius R is approximated as 
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0R R A , 

 

where 0 1.25 fmR  . So that, the surface term is obtained as 
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((Repulsive Coulomb energy from protons)) 

The potential energy from the repulsive Coulomb interactions between protons is given by 
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Noting the number of pairs from protons, the total potential energy is 
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19. The pairing effect. The linear relation Z N : The Fermi gas model ((Townsend)) 

The energy-level diagram for 12C shows why it is natural to have the number of protons equal 

to the number of neutrons in the nucleus, at least for small Z. The fourth term in the semiempirical 

mass formula, the asymmetry term, is a measure of the reduced binding energy as the nucleus 

moves away from the Z N  condition. To see how the dependence of this term on Z and A arises, 

we can apply the Fermi gas that we used in treating elements in a conductor. We see that the Fermi 

energy is given by 
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where N is the number of identical fermions in the box of volume V. The total energy of the fermion 

is given by 
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5
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Since in the nucleus there are two fermion gases, one composed of protons and the other composed 

of neutrons, the total energy is given by 
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where Z is the number of protons and here N is the number of neutrons. We have taken the mass 

m to be the same for the neutron and the proton. Since V A∼  and N A Z  , we see that 
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For a fixed number of nucleons, that is, for fixed A, we can find the value of Z (and therefore N) 

that minimizes the overall energy by setting the derivative of 
total

E  with respect to Z equal to zero.  
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which requires Z A Z N   , that is, the number of protons in the nucleus equal the number of 

neutrons for the minimum energy state. 

Suppose that 
2

A
Z x  . So that, 

2

A
A Z x   . The total energy can be described as a 

function of x as 
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which is the fourth term in the semi empirical mass formula. 

 

20. Evidence of magic number from binding energy vs Z (or N) 

((Wikipedia))  Magic number 

https://www.energy.gov/science/np/articles/magic-gone-neutron-number-32 

This theory of a nuclear shell model originates in the 1930’s, but it was not until 1949 that 

German physicists Maria Goeppert Mayer and Johannes Hans Daniel Jensen et al. independently 

devised the correct formulation. The numbers of nucleons for which shells are filled are called 

magic numbers. Magic numbers of 2, 8, 20, 28, 50, 82 and 126 have been observed for neutrons, 

and the next number is predicted to be 184. Protons share the first six of these magic numbers, and 

126 has been predicted as a magic proton number since the 1940s. Nuclides with a magic number 

of each—such as 16O (Z = 8, N = 8), 132Sn (Z = 50, N = 82), and 208Pb (Z = 82, N = 126)—are 



referred to as "doubly magic" and are more stable than nearby nuclides as a result of greater binding 

energies. 

Here we consider the experimental results ( ) /BE N A  derived from the NIST Data and the 

theoretical prediction from liquid drop model, 
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The difference is defined by 
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(i)  Plot of 
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as a function of N.  

 



 
 

Fig.17 The difference between the binding energy of the elements and the prediction of 

the semi-empirical mass formula, as a function of the number of neutrons N in the 

nucleus. These data provide clear, evidence for the magic numbers 8, 28, 50, 82, 

and 126, for neutrons. Similar evidence shows that 20, 28, 50, and 82 are also magic 

numbers for protons. But there is no concrete evidence, pro or con, concerning 126 

for protons since nuclei with such large Z values have not yet been detected. Local 

maxima appear at Z = 7, 14, 28, 50, 82, 126 (magic numbers are marked by red). 

 



 
 

Fig.18 Plot of ( )BE

A
  vs N. Local maxima appear at N = 6, 14, 20, 28, 54, 82. (magic 

numbers are marked by red). 

 

(ii)  Plot of 
exp

( )B B B

theory

E E E

N N N
        

   
as a function of Z.  

 



 

Fig.19 Plot of ( )BE

A
  vs Z. Local maxima appear at Z = 6, 14, 20, 28, 54, 82. (magic 

numbers are marked by red). 

 

21. Analysis based on the data from NIST 

 

Table 

 

Z N Number of elements 

 

Even   Even:  188 

Even Odd 77 

Odd Even 65 

Odd Odd 23 

Total  353 

 

((Note)) 

Odd-Odd cases (23) 

 

1 1Dz   6

3 3Li   10

5 5B   14

7 7N   40

19 21K   50

23 27V  

98

43 55Tc   138

57 81La   176

71 105Lu  181

73 108Ta  
210

85 125At  
236

93 143Np  

252

99 153Es  258

101 157Md  260

101 159Md  262

103 159Lr  268

105 163Db  
272

107 165Bh  



276

109 167Mt  
280

111 169Rg  284

113 171Nh  288

115 173Mc  292

117 175Ts  

 

22. Energy eigenvalue of particle in an infinite spherical well (spherical quantum dot) 

In order to obtain more precise information on the nucleon energy levels, we need to solve the 

Schrodinger equation. Here we discuss the wave function of a particle in an infinite spherical well 
in three dimensions, with taking no account of spin orbit interaction. Note that the wave function 

is given by 
 

22
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k
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ℓ

, 

 

where 
2 2

2
k

k
E

m

ℏ

 and x ka . 

 

The energy eigenvalue is dependent on the value of l. Suppose that x(l, nr) is the nr-th zero points 
where the spherical Bessel function  jl(x) becomes zero, where nr = 1, 2, 3, ..... (integer). The energy 

eigenvalue is 
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ℏ
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Fig.20 The plot of )(xj
ℓ

 as a function of x. The values of x when 0)( xj
ℓ

 are denoted 

by the blue arrows. x ka . 

 

The energy levels of the infinite spherical well is shown for each l (= 0, 1, 2, 3, 4,...)  

 



 
 

Fig.23 The energy levels of the infinite spherical well. 
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Fig.22 The energy levels of the infinite spherical well. 
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In this mode; the magic number is obtained as 2, 8, 18, 20, 34, 40, 58, 68, …. 

 

23. Effect of the spin-orbit interaction 

Filling order of the levels through Z or for a single nucleon in a nucleus, including the spin-

orbit energy proposed by Goeppert- Mayer and Jensen. The levels on the left are the corresponding 

levels in the absence of the spin-orbit energy. The numbers to the right of each level are the level’s 

degeneracy and (in parentheses) the running total of protons or neutrons needed to fill through that 

level. On the far right are the closed-shell numbers, which agree perfectly with the observed magic 

numbers. The ordering of certain nearby levels is ambiguous (just as it is in atoms) and can be 



different for protons and neutrons. Beyond 82, where the proton well is strongly distorted by 

Coulomb repulsion, the level orderings for protons and neutrons are significantly different.  

 

(a) Schematic energy level diagram (Taylor et al.) 

 

 
 

Fig.23 Filling order of the levels through Z or for a single nucleon in a nucleus, including 

the spin-orbit energy proposed by Goeppert- Mayer and Jensen. The levels on the 

left are the corresponding levels in the absence of the spin-orbit energy. The 

numbers to the right of each level are the level’s degeneracy and (in parentheses) 

the running total of protons or neutrons needed to fill through that level. On the far 

right are the closed-shell numbers, which agree perfectly with the observed magic 

numbers. The ordering of certain nearby levels is ambiguous (just as it is in atoms) 

and can be different for protons and neutrons. Beyond 82, where the proton well is 



strongly distorted by Coulomb repulsion, the level orderings for protons and 

neutrons are significantly different (Taylor et al.) 

 

(b) Schematic energy level diagram (Sakurai and Napolitano) 

 
 

Fig.24 From Sakurai and Napolitano (Energy levels in the nuclear shell model (Haxerl et 

al. Z.Phys.128, 295 (1950). 

 



24. Spin-orbit interaction: Clebsch-Gordan coefficients  

The nuclear shell model for the magic number was first explained by Maria Goeppert Mayer 

and Johannes Hans Daniel Jensen et al. independently.  

 

((Model)) Spin-orbit interaction 

Let us now try making a nucleus by filling the energy levels with protons and neutrons. Since 

protons and neutrons are both spin 1/2 particles. If we neglect the Coulomb repulsion between the 

protons as a first approximation, the energy levels for protons and neutrons are the same. Suppose 

that we fill the energy levels with neutrons, we can put two neutrons in the n = 1, l = 0 (s) ground 

state. Here we use the Clebsch-Gordan co-efficient for the addition of angular momentum. 

 

(i) 1s (j = ½) state 

 

0 1/2 1/2l sD D D    (j = 1/2 for 2 states) 

 

with  

 

1/2D  (
1

2
j  , 2 states) 

 

1 1
, 0, 0

2 2
lj m l m z       , 

 

1 1
, 0, 0

2 2
lj m l m z        . 

 

 

(ii) 2p (j = 3/2) and 2p (j = ½) 

 

1 1/2 3/2 1/2l sD D D D     (j = 3/2 for 4 states and j = 1/2 for 2 states) 

 

with 

 

3/2D  (
3

2
j  , 4 states) 

 

3 3
, 1, 1

2 2
l s

j m l m z       , 

 



3 1 1 2
, 1, 1 1, 0

2 2 33
l ls s

j m l m z l m z            , 

 

3 1 2 1
, 1, 0 1, 1

2 2 3 3
l ls s

j m l m z l m z              , 

 

3 3
, 1, 1

2 2
l s

j m l m z         . 

 

1/2D  

 

1 1 2 1
, 1, 1 1, 0

2 2 3 3
l ls s

j m l m z l m z            . 

 

1 1 1 2
, 1, 0 1, 1

2 2 33
l ls s

j m l m z l m z              . 

 

(iii) 3d (j = 5/2) and 3d (j = 3/2) 

 

2 1/2 5/2 3/2l sD D D D      (j = 5/2 for 6 states, j = 3/2 for 4 states) 

 

with 

 

5/2D  (
5

2
j  , 6 states) 

 

5 5
, 2, 2

2 2
l s

j m l m z       , 

 

5 3 1 2
, 2, 2 2, 1

2 2 5 5
l ls s

j m l m z l m z            , 

 

5 1 2 3
, 2, 1 2, 0

2 2 5 5
l ls s

j m l m z l m z            , 

 



5 1 3 2
, 2, 0 2, 1

2 2 5 5
l ls s

j m l m z l m z              , 

 

5 3 2 1
, 2, 1 2, 2

2 2 5 5
l ls s

j m l m z l m z               , 

 

5 5
, 2, 2

2 2
l s

j m l m z         . 

 

3/2D  (
3

2
j  , 4 states) 

 

3 3 2 1
, 2, 2 2, 1

2 2 5 5
l ls s

j m l m z l m z            , 

 

3 1 3 2
, 2, 1 2, 0

2 2 5 5
l ls s

j m l m z l m z            , 

 

3 1 2 3
, 2, 0 2, 1

2 2 5 5
l ls s

j m l m z l m z              , 

 

,
3 3 1 2

, 2, 1 2, 2
2 2 5 5

l ls s
j m l m z l m z                

 

where 

 

1 1
,

2 2
ss

z s m     (spin-up state for spin 1/2  

 

1 1
,

2 2
ss

z s m      (spin-down state for spin 1/2) 

 

 



 



 

Fig.25 The schematic ordering of the energy levels in a variety of potential energy wells. 

(Adapted from B.T. Feld, Ann. Rev. Nuclear Sci. 2, 239 (1953), as produced by 

R.B. Leighton, Principles of Modern Physics, McGraw-Hill (New York, 1959). 2, 

8, 20, 28, 50, 82, 126. Numbers such as 2, 4, 6, 8. 10 are degeneracy in states. The 

blue line does not denote the energy levels. It show the number if states below the 

corresponding to the blue line.  

 

25. Energy levels of the ground state 

 

 
Z = N 

 

Fig.26 The energy levels of the ground state for 4

2 2He . Two protons in the energy level 1s 

(j = 1/2) with degeneracy 2 and neutrons in the energy level 1s (j = 1/2) with 

degeneracy 2. 

 

 
Z = N 



 

Fig.27 The energy levels of the ground state for 6

3 3Li . Two protons in the energy level 1s 

(j = 1/2) with degeneracy 2 and one proton in the energy level 2p (j = 3/2) with 

degeneracy 4. Two neutrons in the energy level 1s (j = 1/2) with degeneracy 2 and 

one neutron in the energy level 2p (j = 3/2) with degeneracy 4.  

 

 
Z < N 

 

Fig.28  energy levels of the ground state for 11

5 6B . Two protons in the energy level 1s (j = 

1/2) with degeneracy 2 and three proton in the energy level 2p (j = 3/2) with 

degeneracy 4. Two neutrons in the energy level 1s (j = 1/2) with degeneracy 2 and 

four neutrons in the energy level 2p (j = 3/2) with degeneracy 4.  

 

 
Z = N 

 



Fig.29 The energy levels of the ground state for 12

6 6C . Two protons in the energy level 1s 

(j = 1/2) with degeneracy 2 and four proton in the energy level 2p (j = 3/2) with 

degeneracy 4. Two neutrons in the energy level 1s (j = 1/2) with degeneracy 2 and 

four neutrons in the energy level 2p (j = 3/2) with degeneracy 4.  

 

 
Z = N 

 

Fig.30 The energy levels of the ground state for 14

7 7N . Two protons in the energy level 1s 

(j = 1/2) with degeneracy 2, four protons in the energy level 2p (j = 3/2) with 

degeneracy 4, and one proton in the energy level 2p (j = 1/2) with degeneracy 2. 

Two neutrons in the energy level 1s (j = 1/2) with degeneracy 2 and four neutrons 

in the energy level 2p (j = 3/2) with degeneracy 4, and one proton in the energy 

level 2p (j = 1/2) with degeneracy 2. 

 

 
Z = N 

 



Fig.31 The energy levels of the ground state for 16

8 8O . Two protons in the energy level 1s 

(j = 1/2) with degeneracy 2, four protons in the energy level 2p (j = 3/2) with 

degeneracy 4, and two proton in the energy level 2p (j = 1/2) with degeneracy 2. 

Two neutrons in the energy level 1s (j = 1/2) with degeneracy 2 and four neutrons 

in the energy level 2p (j = 3/2) with degeneracy 4, and two proton in the energy 

level 2p (j = 1/2) with degeneracy 2. 

 

26. Some characteristic properties 

The magic number is the number of neutrons (or protons) in a full shell with numbers 2, 8, 20, 

28, 50, 82, and 126. Nuclei which have neutron number and proton numbers each equal to one of 

the magic numbers are called "doubly magic", and are especially stable against decay. The known 

doubly magic isotopes are, 

 

He-4   A=4,  Z = 2,  N = 2 

O-16  A = 16,  Z = 8,  N = 8 

Ca-40  A = 40,  Z = 20,  N = 20 

Ti-50  A = 50,  Z = 22,  N = 28 

Sn-132  A = 132 Z = 50,  N = 82 

Pb-208  A = 208, Z = 82  N = 126 

 

27. Conclusion 

In spite of so many existing calculations in binding energy of atoms, here we calculate the 

binding energy of all the atoms based on the NIST atomic data by using Mathematica. It has been 

clearly confirmed from this work that the difference between the binding energy of atoms and the 

smoothed background derived from the liquid drop model, shows a drastic sharp increase at the 

magic numbers of either protons or neutrons. The origin of magic number anomaly is discussed in 

terms of Fermi gas model and nuclear shell model with spin-orbit interaction. 
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APPENDIX 

 

Table-1 

Atomic weight and isotopic compositions for all elements 

 

List of A, Z, N, M, 
exp

BE

A

 
 
 

 and B

theory

E

A

 
 
 

 for each element 

 

Note that element "i" means I.  
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