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In 1926, Heisenberg was able to account for the helium atom problem using the Schrödinger 

equation with the use of the Pauli's exclusion principle and Hund’s rule for the total spin. Pauli’s 
exclusion principle is the anti-symmetric property of the total wavefunction. In Hund's rule, the 
lowest energy state has the maximum value of total spin S.  

In helium atom, there are two electrons outside the nucleus (two protons and two neutrons). 
These electrons are identical fermions. Note that the Hamiltonian of helium atom is totally 
independent of spins. The first-order perturbation theory is applied to the degenerate orbital states. 
The repulsive Coulomb interactions between two electrons is regarded as perturbation. The total 
wavefunction of two electrons consists of a product of the orbital wavefunction and spin 
wavefunction. According to the Pauli's exclusion principle, the total wavefunction should be 
antisymmetric under the interchange of particles. For the spin wavefunction, the triplet state of two 
1/2-spins is symmetric (S = 1) and the singlet state is antisymmetric (S = 0) under the interchange 
of particles. According to the Hund's rule, the energy level of the symmetric state (S = 1) should 
be lower than that of the antisymmetric state (S = 0) for typically a (1s)(2s) electron configuration. 
The energy level of the doubly degenerate state is split into two separated states. For the low energy 
state, the orbital wavefunction is antisymmetric (S = 1, the orthohelium) under the interchange of 
two particles, while the orbital wavefunction is symmetric (S = 0, the parahelium). Heisenberg 
found that the separation between two separated energy is a spectral term and is much larger than 
conventional magnetic dipole-dipole interaction. Using the Dirac spin exchange operator, the 
effective spin Hamiltonian can be expressed in terms of a Heisenberg exchange interaction with 
very large exchange interaction (it is on the order of the spectral term). For the first time, 
Heisenberg gave a clear explanation for the origin of the ferromagnetism; the spectral term of two 
electron systems. According to the book of Cassidy, this work had enabled Heisenberg's Nobel 
Prize-winning work (Nobel laureate in physics in 1932). It is amazing that Heisenberg used the 
Schrődinger equation to solve the two-body problem of helium atom, while Heisenberg debated 
with Schrődinger whether the Heisenberg's matrix formulation is much more fundamental to 
quantum mechanics, compared to the Schrődinger formulation. When the number of identical 
particles change from one to two, new concepts should be required for understanding the quantum 
mechanics. We need to take into account of interaction between two particles, time independent 
perturbation (degenerate and nondegenerate vases), Pauli exclusion principle, Hund’s law, and so 
on. 

When I taught on the physics of helium atom (identical particle) in Phys.422 (Quantum 
Mechanics II) in the Spring, 2022, I became so interested in the experimental data of exchange 
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integrals from helium spectra. Finally, I found the experimental data of helium atom, so-called 
NIST Data (National Institute of Standard and Technology). Next step, I calculated the Coulomb 
integrals and the exchange integrals (which are seen in many standard textbooks on quantum 
mechanics) by using Mathematica. The main motivation of this article is to compare the theoretical 
values of exchange integral based on the first-order perturbation to the degenerate system, with 
those derived from the NIST Data. In order to do this, I collected information related to the 
exchange integrals of helium atom, from standard textbooks of quantum mechanics. 

Here, we present the Heisenberg's theory on helium atom. We use Mathematica for the 
calculation of Coulomb integral and exchange integral. The symmetric and antisymmetric 
wavefunctions, can be constructed from the orbital wavefunctions of hydrogen atom with one 
electron. The first-order perturbation theory of the degenerate system is applied, where the 
repulsive Coulomb interaction is treated as a perturbation. Calculated values are compared with 
the experimental values obtained from NIST Atomic Spectra Data base levels Form. 
 

https://physics.nist.gov/PhysRefData/ASD/levels_form.html 
 

The second element in the periodic table provides our first example of a quantum-mechanical 
problem which cannot be solved exactly. Nevertheless, as we will show, approximation methods 
applied to helium can give accurate solutions in perfect agreement with experimental results. In 
this sense, it can be concluded that quantum mechanics is correct for atoms more complicated than 
hydrogen. By contrast, the Bohr theory failed miserably in attempts to apply it beyond the 
hydrogen atom.  

We do not have to take into account of the spin-orbit coupling in helium since it is actually 
extremely small because of small Z (=2). Note that the magnitude of the spin-orbit interaction is 
proportional to the atomic number Z. Note that the value of Z may be reduced from 2 to 1.6875 
because of the polarization effect in the ground state (1s)(1s) electron configuration. 
 
 



 

 

3 

 

 
 

Fig.1 At the University of Chicago. 1929. Front row from left to right: Werner 
Heisenberg, Paul Dirac, Robert Millikan, and Friedrich Hund. 
 
From the book of D. Cassidy, Beyond Uncertainty; Heisenberg, Quantum 

Physics, and the Bomb (Bellevuw Literary Press, 2009). 
 
((Prof. Werner K. Heisenberg)) 

Werner Karl Heisenberg (Würzburg, Kingdom of Bavaria, German Empire; 5 December 
1901 – Munich, Bavaria, Germany; 1 February 1976) was a German theoretical physicist and one 
of the key pioneers of quantum mechanics. He published his work in 1925 in a breakthrough paper. 
In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his 
matrix formulation of quantum mechanics was substantially elaborated. He is known for the 
uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize 
in Physics "for the creation of quantum mechanics". 
 
https://en.wikipedia.org/wiki/Werner_Heisenberg 
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Fig.2 Prof. Werner K. Heisenberg in 1933 
 
((C.P. Enz)) 
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Heisenberg’s application of quantum mechanics (1926-1933) or the settling of the new land 

[Helvetica Physica Acta 56, 993 (1983)] 

We find a very interesting article of C.P. Enz in the introduction, which clearly explained that 
Werner Heisenberg played a significant role of the development in the quantum mechanics (1926 
– 1933). 
 

The discovery of quantum mechanics between 1925 and 1926 was almost simultaneously 
followed by the setting out for the new land to explore the new theory with respect to the physical 
interpretation and its formal structure. Heisenberg played a important part in both these stages. In 
his exploratory role, Heisenberg mainly contributed as co-author of the 3-man paper (with Born 
and Jordan), but also as partner of Pauli in an exchange of letters on the development of a 
formalism of action and angle variables. This endeavor was never published because of the 
problem had just been solved in a most elegant way as Dirac. In a third stage devoted to the 'settling 
of the new land' quantum mechanics was applied to the physical problems left unexplained by the 
old quantum theory. Here again Heisenberg made important contributions which are described in 
this paper. Prominent among the unsolved physical problems was the anomalous Zeeman effect 
with which Heisenberg had struggled since the beginning of his scientific career and whose 
solution he got at last in 1926. A more difficult problem, because it involves two electrons, was 
the singlet-triplet splitting in the spectrum of the Helium atom which Heisenberg solved in the 
same year. The third application concerned an old many-electron problem, namely the explanation 
of ferromagnetism; it was settled by Heisenberg in 1928. 
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______________________________________________________________________________ 
1. Overview: Origin of ferromagnet (Heisenberg) 

In helium atom (denoted as He I) there are two electrons (identical particles) near the nucleus 
consisting of two protons and two neutrons. There is a repulsive Coulomb interaction between two 
electrons, in addition to attractive Coulomb interaction between two protons and each electron. 
The energy level of electrons in helium atom was first discussed by Werner Heisenberg. The total 
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wavefunction is a product of orbital wavefunction and spin wavefunction. The singlet spin is 
antisymmetric, while the triplet spin is symmetric with respect to interchange of particles. 

The system of two electrons in helium atom is closely related to the origin of ferromagnetism 
which was found by Werner Heisenberg in 1926. It is amazing that the origin of ferromagnetism 
can be derived from the application of quantum mechanics to two electrons in helium atom. It was 
finally recognized in the early days of quantum mechanics that the Heisenberg’s exchange 
interaction probably valid between all neighboring atoms. The development of his research on the 
origin of ferromagnet and He atom is well described by C.P. Enz [Helvetica Physics Acta 56, 993-
1001 (1983); Heisenberg's applications of quantum mechanics (1926-33) or the settling of the new 
land 
 

https://www.e-periodica.ch/cntmng?pid=hpa-001%3A1983%3A56%3A%3A1314  
______________________________________________________________________________ 
2. Identical particles fo helium atom and Pauli’s principle of exclusion 

As a typical example of identical particles, we discuss the energy levels of two electrons around 
the nucleus (two protons) in helium (He) atom. Since electrons are fermion with a spin 1/2, the 
total wavefunction of the two electrons should be antisymmetric under the interchange of two 
particles. These wavefunctions are the product of the orbital wavefunction and spin wavefunction. 
The spin wavefunction is antisymmetric for S = 0 (singlet), while it is symmetric for S = 1 (triplet).  
 

1/2 1/2 1 0D D D D   . 

 
Correspondingly, the orbital wavefunction should be symmetric for S = 0, while it should be 
symmetric for S = 1. Thanks to NIST (National Institute of Standard and Technology, we can 
obtain the atomic spectra data of He I and He II from the web site; NIST (National Institute of 
Technology) atomic spectra data base levels form. Here the energy levels of two electrons in He 
atom will be discussed using the symmetric and antisymmetric orbital wavefunctions and then 
compared with the NIST data which are the best among experimentally reliable ones: 
https://physics.nist.gov/PhysRefData/ASD/levels_form.html 

Although the Hamiltonian of two electrons in helium atom does not include any interaction 
dependent on spins. The total wavefunction should be antisymmetric under the interchange of two 
particles in the unperturbed degenerate system. When the repulsive Coulomb interaction between 
two electrons is applied to the unperturbed system, the resultant energy levels split into two levels; 
energy level with the symmetric spin state (S = 1; triplet) and the energy (antisymmetric spin state 
(S = 0, singlet), leading to the effective spin Hamiltonian, so called Heisenberg’s exchange 
interaction. Thus, the origin of ferromagnetism was explained from the exchange interaction 
between spins. The final form of the effective spin Hamiltonian is expressed as 
 

1 22

1 2ˆ ˆ ˆˆ ( )1
2eff

K
H I K   S S

ℏ
,  (Heisenberg model) 
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which is called as Heisenberg’s exchange interaction; interaction between  and 2
ˆS , where J is 

the Coulomb integral and K is the exchange integral. In some books, the notations I and K are used 
instead of K and J, respectively. Note that the permutation operator is expressed by the Dirac spin 

exchange operator 12P̂  as 

 

12 1 2 1 22

1 4 1ˆ ˆ ˆ ˆˆ ˆ ˆ(1 ) (1 )
2 2

P       S S σ σ
ℏ

.  (Dirac spin exchange operator) 

 
After Heisenberg’s paper, Dirac also published a paper on the apparent spin-spin interaction. He 
derives the spin-spin interaction ingeniously by considering the interchange of particles (in general, 
permutation) as a physical quantity. 
 
((Tomonaga, Sin-itiro))  
From the book of S. Tomonaga, The Story of Spin (University of Chicago) 

We found a very interesting article on the origin ferromagnetism by Heisenberg (Nobel prize 
in physics, 1932), in Tomonaga’s book [The Story of Spins by S. Tomonaga (University of 
Chicago, 1997)]: The content of this article is as follows. We note that Prof. Sin-itiro Tomonaga 
(Nobel prize on physics, 1965, sharing with J. Schwinger and R.P. Feynman) collaborated with 
Prof. Heisenberg at Leipzig University in Germany, during the period between 1937 and 1939. In 
1929, both Heisenberg and Dirac were invited to Japan in 1929, When Heisenberg and Dirac 
visited Japan in the September of 1929, they gave six lectures each on their works on quantum 
mechanics at Tokyo Imperial University (current University of Tokyo) and Riken. Tomonaga was 
strongly influenced by their lectures, facing newly developed quantum mechanics in Europe. 
 
______________________________________________________________________________ 

The effect of the apparently large interaction between electron spins is not limited to spectral 
term values. In order to explain the ferromagnetism of iron (Fe), as you may know, Pierre Weiss 
proposed long ago that there is a large interaction between molecular magnets based on the then-
accepted concept of the molecular magnet. By using this idea, Weiss could explain a wide variety 
of experimental results related to ferromagnetism. However, the origin of such a strong interaction 
between molecular magnets was entirely unknown. 

Then, there appeared the new interpretation of the spectral terms of alkaline earth (but not 
Helium). This new interpretation was given by Werner Heisenberg in 1926., he not only discovered 
that the symmetry property of the wavefunction has a close connection to a particle’s statistics in 
a many-electron system but also found that it plays an important role in variety of problems and 
for the first time gave a clear explanation of the spectral terms of two-electron systems. 
Furthermore, immediately after this work he applied the same idea to the problem of 
ferromagnetism. 

1Ŝ
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Ferromagnetism occurs because electron spins outside all the Fe atomic cores point in the same 
direction over an entire macroscopic crystal of Fe. The apparently very strong spin-spin interaction 
just discussed, plays the role of orienting spins in the same direction. Therefore, the subtle property 
of electron spin appears directly in the everyday macroscopic phenomenon of a magnet interacting 
iron, and this is related to wholly transcendent facts such as the symmetry property of 
wavefunctions and the electron being a fermion (obeying the Pauli’s exclusion principle). This is 
one good example of transcendent theory appearing directly in ordinary phenomena. 
 
______________________________________________________________________________ 
3. Hund' rule 

We consider the total spin angular momentum for the electron configuration, (1s)(2s, by 
using the Hund’s rule 
 

,z z    (S = 1. m = 1) 

 

 
 

(a) 
 

1
[ , , ]

2
z z z z       (S = 1. m = 0) 

 
1

[ , , ]
2

z z z z       (S = 0. m = 0) 
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(b) 
 

 
 

(c) 
 

,z z    (S = 1. m = -1) 

 

 
 

(d) 
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Fig.3 (a)-(d) Occupancy of electron spins with spin 1/2 in the (1s)(2s) electron 
configuration of helium atom. S = 1 (the lowest energy, triplet). S = 0 (singlet). 

 
((Hund’s rule)) 

In atomic physics, Hund's rules refers to a set of rules that German physicist Friedrich Hund 
formulated around 1927, which are used to determine the term symbol that corresponds to the 
ground state of a multi-electron atom. The first rule is especially important in chemistry, where it 
is often referred to simply as Hund's rule.  
The three rules are as follows. 
 
(a) For a given electron configuration, the term with maximum multiplicity has the lowest 

energy. The multiplicity is equal to  where is the total spin angular momentum for all 
electrons. The multiplicity is also equal to the number of unpaired electrons plus one. 
Therefore, the term with lowest energy is also the term with maximum and maximum number 
of unpaired electrons. 

 
(b) For a given multiplicity, the term with the largest value of the total orbital angular 

momentum quantum number has the lowest energy. 
 
(c) For a given term, in an atom with outermost subshell half-filled or less, the level with the 

lowest value of the total angular momentum quantum number(for the operator  J L S

lies lowest in energy. If the outermost shell is more than half-filled, the level with the 
highest value ofis lowest in energy.  

 
((Hund's rule)) The Hund's rule is applied to the present case as follows. 

Hund's rule-I: 

The lowest energy state should have maximum in S . It means that the exchange 
energy has a minimum.  

Hund's rule-II: 

With the maximum S , the value of L  has maximum. It means that the Coulomb 
energy has a minimum. 

 
The triplet levels and the singlet levels do not combine optically with each other. Hund’s rule 

suggests that the triplet spin state is lower energy than the singlet spin state is lower energy than 
the singlet spin state. 
 
((Spin-orbit interaction)) H.A Bethe and E.E. Salpeter 

In a purely nonrelativistic theory, the energy eigenvalues of all the ortho-state are degenerate. 
If the relativistic interaction between spin and orbital angular momentum is taken into account, 
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however, this degeneracy is partially removed. Each nonrelativistic (ortho) level is split into a 
triplet, the energy being slightly different for the three values of the quantum number j.  

A symmetric spatial wavefunction (para-state), on the other hand, must be multiplied by the 
single antisymmetric spin wave function. For a fixed value of l, the total quantum number J must 
then be equal to l, since s = 0. Thus, even if the spin-orbit interaction is included, each 
nonrelativistic energy level the para-system remains unsplit. 
 
____________________________________________________________________________ 
4. Dirac spin exchange operator 

12P̂   is the Dirac exchange operator for spins. It is the permutation operator for spins. The detail 

of the definition will be discussed later.  
  

12 1 2 1 2
P̂ z z z z        , 

 

12 1 2 1 2
P̂ z z z z        , 

 

12 1 2 1 2
P̂ z z z z        , 

 

12 1 2 1 2
P̂ z z z z        . 

 

We note that the matrix of 12P̂   under the basis of four states 
1 2

z z   ,  
1 2

z z   , 

1 2
z z   , and  

1 2
z z    is expressed by 

 

12

1 0 0 0
0 0 1 0ˆ
0 1 0 0
0 0 0 1

P


 
 
 
 
 
 

 

 

1 2
z z   and are the eigenstate of 12P̂   with the eigenvalue 1. We consider the matrix of 12P̂   

under the sub-basis, 
1 2

z z    and 
1 2

z z    

 

12

0 1ˆ ˆ(subspace)
1 0 xP  
 

  
 

. 

 
So that, the eigenkets and eigenvalues are obtained as 
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1 2 1 2

1
[ ]

2
z z z z       , (eigenvalue 1, symmetric state) 

 
and 
 

1 2 1 2

1
[ ]

2
z z z z       , (eigenvalue 0, anti-symmetric state) 

 
In conclusion, we have triplet state and singlet; 
 
Triplet state (symmetric state) with the total spin S = 1 
 

1 2

1 2 1 2

1 2

1
[ ]

2

z z

z z z z

z z

  

      

  

,  

 
Singlet state (antisymmetric state) with the total spin S = 0 
 

1 2 1 2

1
[ ]

2
z z z z        

 
______________________________________________________________________________ 
5. Model of helium atom. Definition of He I and He II 

The helium atom consists of two electrons in orbit around a nucleus containing two protons 
and two neutrons. 
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Fig.4 Helium I. Two electrons (at the position vectors r1 and r2) around the nucleus with 

two protons in the nucleus at the origin. As a perturbation there is a weak repulsive 
Coulomb interaction. 
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Fig.5 Helium II (He+), where one electron is removed from the original helium atom 
(He I). 

 
There is one electron outside the He nucleus (2 protons). 
 

 
 

 
Fig.6 The region of energy diagram for He I (the green region) and He II (the pink region), 

where there is one e electron around the He nuclear core (two protons). 
The ionization energy is 1 24.5873890IE   eV for He-I, and 2 54.4177631IE   eV 

for He-II. 
 
The helium atom has two electrons bound to a nucleus with charge Z = 2. The successive removal 
of the two electrons can be diagrammed as 
 
(a) 

He He ( e)               

 
with 
 

1  first ionization energy =24.5873890 eVIE    

 
The first ionization energy 1IE is the minimum energy required to remove the first electron from 

helium. 
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(b) 
 

2He He +(-e)     

 
with 
 

2 second ionization energy =54.4177631 eVIE    

 
The second ionization energy 2IE  is the minimum energy required to remove the second electron 

from He+ ion. 
The energy level diagram in He atom consists of two regions, He I and He II. For He I, there 

are two electrons around the He nucleus. For He II, there is only one electron around the He nucleus. 
He II is denoted as He+ (ion). We show the energy level diagram for He atom below; the pink 
region (He-II; between -54.41776 eV and 0 eV) and the green region (He I; between -79.0052 eV 
and -54.41776 eV). The total ground state energy for the (1s)(1s) state is  
 

1 2(1 ,1 ) 79.0051521 eVGE s s IE IE     . 

 
The value of the second ionization energy 2I  can be calculated exactly since He+ is a hydrogen-

like ion.  
 

2
2 1 (He ) 4 54.4177631 eVsIE E RyZ Ry       

 
where 
 

Ry = 13.605693122994 eV  (Rydberg constant) 
Hartree=2Ry    (Hartree energy) 

 
______________________________________________________________________________ 
6. Hamiltonian of two electron in helium atom: commutation relation 

We looked at a very crude model of the helium atom, in which we ignored the interaction 
between the two electrons. In that model, the spatial wave function for helium is just the product 
of two hydrogen-like functions. In all but the ground state, we can construct totally symmetric and 
totally antisymmetric combinations of the wave functions. Since a system composed of two 
fermions (which the electrons are) must have an overall antisymmetric wave function, we need to 
combine symmetric spatial functions with antisymmetric spin functions, and vice versa. States 
with an antisymmetric spin function are known as parahelium, and states with a symmetric spin 
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function are known as orthohelium. Since the ground state always has a symmetric spatial function, 
it is always parahelium, but the excited states all come in both forms. Because of the exchange 
force, the average distance between two identical particles in a symmetric spatial state is less than 
for an antisymmetric spatial state. Since two electrons have a higher interaction energy if they are 
closer together, we’d expect parahelium (symmetric spatial and anti- symmetric spin) energies to 
be higher than the corresponding orthohelium (antisymmetric spatial and symmetric spin) states, 
and this is, in fact, observed experimentally. 

The total wavefunction of the system consisting of two identical particles (electrons in the 

present case) is expressed by a product of orbital wavefunction orbital  and spin wavefunction 

spin  as 

 
total orbital spin    . 

 
Here we define the permutation operator for the total system as. 
 

12 12 12 12 12
ˆ ˆ ˆ ˆ ˆtotal orbital spinP P P P P       

 
where for the sake of convenience, we use the notations 
 

12 12
ˆ ˆorbitalP P ,  12 12

ˆ ˆspinP P    

 
So that we have 
 

12 12 12

12 12

ˆ ˆ ˆ( )( )

ˆ ˆ

total space spin

space spin

P P P

P P





  

 

  

 
 

 
Now we start with the unperturbed system without Coulomb interaction between two electrons. 

We consider only the orbital wavefunction, since the Hamiltonian of the unperturbed system is 
independent of spins 
 

0 0 0 2 1 0
ˆ ˆˆ ˆ ˆ ˆ(1,2) (2,1) (1) 1 1 (2)H H H H       

 
With 
 

2 2
1

0
1

ˆˆ (1)
ˆ2

Ze
H

m
 

p

r
,  

2 2
2

0
2

ˆˆ (2)
ˆ2

Ze
H

m
 

p

r
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2

1 2

ˆ ˆ(1, 2) (2,1)
ˆ ˆin in

e
H H 

r r
 

 
The total Hamiltonian 
 

0 2 1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1, 2) (2,1) (1) (2) (1, 2)inH H H I I H H        

 
since 
 

0 1 2 0

1 0 0 2

ˆ ˆ ˆ ˆ ˆ ˆ(2,1) (2) (1) (2,1)
ˆ ˆ ˆ ˆ ˆ(2) (1) (1, 2)
ˆ (1, 2)

in

in

H H I I H H

I H H I H

H

    

    



 

 
__________________________________________________________________________ 
The permutation operator for the orbital wavefunction 
 

12 12
ˆ ˆ ˆ ˆ ˆ(1, 2) (2,1) (1, 2)P H P H H    

 

12 12 0
ˆ ˆ ˆ ˆ ˆ[ , (1,2)] [ , (1, 2) (1,2)] 0inP H P H H     

 
where  
 
The wavefunction for 

1 2a b    

 

0 0 2 1 01 2 1 2

0 2 1 01 2 1 2

0 2 1 01 2 1 2

(0) (0)
11 2 1 2

(0) (0)
1 2

ˆ ˆˆ ˆ ˆ(1, 2) ( (1) 1 1 (2))

ˆ ˆˆ ˆ( (1) 1 )( (1 (2))( )

ˆ ˆˆ ˆ(1) 1 (1 (2)

ˆ(1

( )

a b a b

a b a b

a b a b

a a b a b b

a b a b

H H H

H H

H H

E E

E E

   

   

   

   

 

     

     

   

   

  

 

 
Similarly,  
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0 0 2 1 01 2 1 2

0 2 1 01 2 1 2

0 2 1 01 2 1 2

(0) (0)
11 2 1 2

(0) (0)
1 2

ˆ ˆˆ ˆ ˆ(1, 2) ( (1) 1 1 (2))

ˆ ˆˆ ˆ( (1) 1 )( (1 (2))( )

ˆ ˆˆ ˆ(1) 1 (1 (2)

ˆ(1

( )

b a b a

b a b a

b a b a

b b a b a a

b a b a

H H H

H H

H H

E E

E E

   

   

   

   

 

     

     

   

   

  

 

 
or 
 

(0) (0)
0 1 2 1 21 2 1 2 1 2 1 2

ˆ [ ] ( )[ ]a b b a a b a b b aH C C E E C C                

 
where 1C  and 2C  are arbitrary constants. So that, the linear combination of  and 

1 2a b
   are the eigenkets of the unperturbed Hamiltonian 0Ĥ  with the energy eigenvalue 

(0) (0)
a bE E   

 
((Note)) 
 

12 0 12 12 01 2 1 2

(0) (0)
12 1 2

(0) (0)
1 2

ˆ ˆ ˆ ˆ ˆ(1, 2) (1,2)

ˆ( )

( )

a b b a

b a b a

a b a b

P H P P H

E E P

E E

   

 

 

  

  

  

 

 
where 
 

0 0 2 1 01 2 1 2

0 2 1 01 2 1 2

0 2 1 01 2 1 2

(0) (0)
1 2 1 2

(0) (0)
1 2

ˆ ˆˆ ˆ ˆ(1, 2) ( (1) 1 1 (2)

ˆ ˆˆ ˆ( (1) 1 )( ) (1 (2))(

ˆ ˆˆ ˆ(1) (1 ) 1 (2)

( )

b a b a

b a b a

b a b a

b b a b a a

b a b a

H H H

H H

H H

E E

E E

   

   

   

   

 

     

     

   

   

  

 

 
Noting that 
 

(0) (0)
0 1 2 1 2

ˆ (2,1) ( )a b b a a bH E E        

 
Thus, we have 

1 2b a
 
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(0) (0)

12 0 12 01 2 1 2 1 2
ˆ ˆ ˆ ˆ(1, 2) ( ) (2,1)a b a b a b a bP H P E E H            

 
leading to 
 

12 0 12 0 0
ˆ ˆ ˆ ˆ ˆ(1, 2) (2,1) (1, 2)P H P H H    

 

Using the property that 2
12

ˆˆ( ) 1P  , we get the commutation relation 

 

12 0 0 12
ˆ ˆ ˆ ˆ(1,2) (1, 2)P H H P  

 
______________________________________________________________________________ 
7. Energy level for helium atom: He I and He II from analogy from hydrogen atom 

We consider the energy level for helium, without any perturbation including repulsive 
Coulomb interaction. 

There are two electrons around two protons (Z = 2). One electron is in the orbital state ( 1n ) 

and the other electron is in the orbital state ( 2n ). Based on the Bohr model, the total energy of 
electron is 
 

2 2

0 1 2 2 2
1 12

2
2 2

1 1

( , )

1 1
2  ( ) eV

Z Z
E n n Ry Ry

n n

Ry
n n

  

  

  

 
Note that 
 
(n1= 1, n2=1) -108.84554984 eV 
(1s,1s)G -79.0051521 eV    (0 eV, ground state) 
(1,2)  -68.0284656 eV   (-13.6056931 eV) 
(1,3)  -60.46974721 eV   (-6.04697472 eV) 
 
where the observed energy level  of the ground state (1 ,1 )

G
s s ,  

 

V

(1 ,1 ) (1,1) 1 ,1 1 ,1

108.84554984 e 3
79.005

V 28.8 032eV
= 2 e

G in obs
s s s s H s s 

 



  
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1 ,1 1 ,1
in

s s H s s  = 29.83032 eV (repulsive Coulomb interaction). 

 
Recently we found the experimental data on the energy level diagram of He I and He II from the 
NIST Data. Unlike the situation in 1928, we already have reliable experimental results. 
 
The energy level without perturbation: He I region 
 

(1s)(2s) -13.6057 eV 
(1s)(2p) -13.6057 eV 
(1s)(3s) -6.04697 eV 

 
______________________________________________________________________________ 
8. The energy level diagram of helium I (NIST) 

Here are the energy level data of He I which are obtained from NIST, where the units of energy 
in (eV). In the NIST Data, the energy of ground state is chosen to be zero.  
 
((Definition of energy level for He I)) 

We use a new notation for the energy level for convenience as 
 

1(1 , ) (1 , )
our NIST

E s nl E s nl IE  , 

 

1 1(1 ,1 ) (1 ,1 )
our NIST

E s s E s s IE IE    =-24.587389 eV. 

 
______________________________________________________________________________ 
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Fig.7  The energy level diagram of electron in He I (the green region).  
 
((NIST data)) 

https://physics.nist.gov/PhysRefData/ASD/levels_form.html 
NIST Atomic Spectra Data base levels Form 

 
Table I Energy level for He I (2 electron outside the He nucleus with 2 protons). 
 
     NIST (eV)   Our notation (eV) 
______________________________________________________________________________ 
1s1s 1S j=0 0.0000000 -24.5873890 
______________________________________________________________________________ 
1s2s 3S 1 19.81961484203  -4.76777415797 
1s2s 1S 0 20.6157751334  -3.9716138666 
 
______________________________________________________________________________ 
1s2p 3P 2 20.96408720675  -3.62330179325 
  1 20.96409668230  -3.6232923177 
  0 20.96421916817  -3.62316983183 
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1s2p 1P 1 21.2180230218  -3.3693659782 
 
______________________________________________________________________________ 
1s3s 3S 1 22.718466742  -1.868922258 
 
1s3s 1S 0 22.920317682  -1.667071318 
 
______________________________________________________________________________ 
1s3p 3P 2 23.0070734673  -1.5803155327 
  1 23.0070761918  -1.5803128082 
  0 23.0071097475  -1.5802792525 
 
1s3d 3D 3 23.07365102990  -1.5137370701 
  2 23.07365134140  -1.5137376586 
  1 23.07365682165  -1.51373217835 
 
1s3p 1P 1 23.0870188528  -1.5003701472  
 
_____________________________________________________________________________ 
1s4s 3S 1 23.593959036  -0.993429964 
 
1s4s  1S 0  23.6735709133  -0.9138180867 
 
______________________________________________________________________________ 
1s4p  3P 2  23.7078915511  -0.8794974489 
   1  23.7078926664  -0.8794963336 
   0  23.7079063452  -0.8794826548 
 
1s4d  3D 3  23.73609051247  -0.85129848753 
   2  23.73609066143  -0.85129833857 
   1  23.73609295768  -0.85129822857 
 
1s4d  1D 2  23.73633535786  -0.8510536421 
 
1s4f  3F 3  23.737007130074  -0.850381869926 
   4  23.737008015292  -0.850380984708 
   2  23.737009083833  -0.850379916167 
 
1s4f  1F 3  23.737010045198  -0.850378954802 
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1s4p  1P 1  23.7420703918  -0.8453186082 
 
1s5s  3S 1  23.9719717413  -0.6154172587 
 
1s5s  1S 0  24.0112153129  -0.5761736871 
 
1s5p  3P 2  24.0282253870  -0.559163613 
   1  24.0282259477  -0.5591630523 
   0  24.0282328220  -0.5591561780 
 
______________________________________________________________________________ 
9. The energy level diagram of Helium II (NIST) 

Here are the energy level data of He II which are obtained from NIST, where the units of 
energy in (eV). In our notation (here), the energy of ground state [(1s)(1s) state] is taken to be 
zero. 
 

NIST Data, 
https://physics.nist.gov/PhysRefData/ASD/levels_form.html 
NIST Atomic Spectra Data base levels Form 

 
Ground state energy: -54,417760 eV. (1s; 2S1/2) 

 
for He+ ion (only one electron surrounding the two protons at the nucleus) 
 

((Definition of the energy level for He-II) 
 

2( ) ( )
our NIST

E nl E nl I    

 

2 2 2(1 ) (1 ) 0
our NIST

E s E s I I I       

 



 

 

25 

 

 
 
Fig.8  The energy level diagram of electron in He II (the pink region).  
 
_____________________________________________________________________________ 
3s  -6.04645 eV  j = 1/2 
 
3p  -6.04625 eV  3/2 
  -6.04646 eV  1/2 
 
2s  -13.6047 eV  1/2 
 
2p  -13,604 eV  3/2 
  -13.6047 eV  1/2 
 
1s  -54.41776 eV  1/2 
 
_______________________________________________________________________ 
Helium II (NIST Data) 
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_______________________________________________________________________ 
  j NIST  Our notation 
_______________________________________________________________________ 
1s 2S 1/2 0.0000 (eV)  -54.422772492 (eV) 
_______________________________________________________________________ 
2p 2P 1/2 40.8130308564 -13.6097416358 
  3/2 40.8137570515 -13.6090154405 
 
2s 2S 1/2 40.813030889283 -13.60968356368 
________________________________________________________________________ 
3p 2P 1/2 48.37129741757 -6.05147509198 
  3/2 48.37151258731 -6.05125990498 
 
3s 2S 1/2 48.3713147192 -6.05145777298 
 
3d 2D 3/2 48.371512233303 -6.05126025867 
   5/2 48.37151583949701 -6.05118854228 
________________________________________________________________________ 
4p 2P 1/2 51.01666119611 -3.406111295876 
 3/2 51.01675197039 -3.40602052159 
 
4s 2S 1/2 51.01666951092 -3.406102981056 
 
4d 2D 3/2 51.016751892 -3.406020599976 
 5/2 51.0167820747 -3.40599041796 
 
4f 2F 5/2 51.0167820202 -3.405990471776 
 7/2 51.0167971475 -3.405975344476 
 
Table II Energy level for He II (1 electron outside the He nucleus with 2 protons). If the 

ground state is set to be -54.422772 eV and the vacuum level is set to be 0 eV, the 
energy for 3s state (for example) is evaluated as -54.422722+48.3713 = -6.052 eV. 

 
______________________________________________________________________________ 
10. Energy level diagram for He I (summary of experimental results) 
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Fig.9 Energy levels and transitions in helium. S=0 (parahelium). S=1 (orthohelium). The 

singlet and triplet levels are grouped separately, because the transitions between 
singlet and triplet levels would violate the 0S   selection rule. See the on-line 
data base compiled by the National Institute of Standards and Technology (NIST). 
https://physics.nist.gov/PhysRefData/ASD/levels_form.html 

 
______________________________________________________________________________ 
11. Helium-I spectra (experimental results) 

 

 
 
Fig.10 Spectrum of helium atom, Intensity vs wavelength. 

http://www.ice-age-ahead-iaa.ca/scrp_absolute_climate/tcca021.htm 
 
((Helium spectra)) 
 
728.1 nm 
 

1S0 (1s3s)  E1=-1.66707 eV 
1P1 (1s2p)  E2=-3.36937 eV 

 

1 2E E E   = 1.7023eV,  
2

728.333
c

E


  


ℏ

nm. 

 
706.765 nm 
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3S1 (1s3s)  E1=-1.86892 eV 
3P0 (1s2p)  E2=-3.62317 eV 

 

1 2E E E   = 1.75425 eV,  
2

706.765
c

E


  


ℏ

nm. 

 
667.997 nm 
 

1D2 (1s3d)  E1=-1.51331 eV 
1P1 (1s2p)  E2=-3.36937 eV 

 

1 2E E E   = 1.85606 eV,  
2

667.997
c

E


  


ℏ

nm. 

 
587.759 nm 
 

3D1 (1s3d)  E1=-1.51373 eV 
3P0 (1s2p)  E2=-3.62317 eV 

 

1 2E E E   = 2.10944 eV,  
2

587.759
c

E


  


ℏ

nm. 

 
501.708 nm 
 

1P1 (1s3p)  E1=-1.50037 eV 
1S0 (1s2s)  E2=-3.97161 eV 

 

1 2E E E   = 2.47124 eV,  
2

501.708
c

E


  


ℏ

nm. 

 
492.198 nm 
 

1D2 (1s4d)  E1=-0.850379 eV 
1P1 (1s2p)  E2=-3.36937 eV 

 

1 2E E E   = 2.518991 eV,  
2

492.198
c

E


  


ℏ

nm. 

 
471.460 nm 
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3S1 (1s4s)  E1=-0.99343 eV 
3P0 (1s2p)  E2=-3.62317 eV 

 

1 2E E E   = 2.62974 eV,  
2

492.198
c

E


  


ℏ

nm. 

 
447.306 nm 
 

3D1 (1s4d)  E1=-0.851296 eV 
3P0 (1s2p)  E2=-3.62317 eV 

 

1 2E E E   = 2.771874 eV,  
2

447.306
c

E


  


ℏ

nm. 

 
388.971 nm 
 

3P0 (1s3p)  E1=-1.58028 eV 
3S1 (1s2s)  E2=-4.76777 eV 

 

1 2E E E   = 3.18749 eV,  
2

388.971
c

E


  


ℏ

nm. 

 
______________________________________________________________________________ 
12. Symmetry of the total wave function for helium atom 

The Hamiltonian is given by 
 

0
ˆ ˆ ˆ

in
H H H   

 
2 2 2

0 1 2
1 2

1 1 1ˆ ˆ ˆ( ) ( ( )
ˆ ˆ2

H Ze


   p p
r r

  

 
2

1 2

ˆ
ˆ ˆin

e
H 

r r
  (perturbation, repulsive Coulomb interaction) 

 

where Z = 2, and ˆ
in

H   contains only the Coulombic term and no spin dependent term.  

The Hamiltonian Ĥ  does not include any spin operators. We note that 
 

12 12 0
ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] 0

in
P H P H H    
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It seems that the wavefunction consists of orbital parts. 
 

ˆ
orbital orbitalH E  . 

 
However, it is required that the total wavefunction is given by 
 

total orbital spin
    . 

 
The permutation operator for the total system is defined by 
 

12 12 12
ˆ ˆ ˆtotalP P P   . 

 
For the fermion system, we have 
 

12
ˆ total

tot totP       (anti-symmetric) 

 

where 12P̂  is the orbital permutation operator and 12P̂   is the spin permutation operator. 

 
13. Symmetry of spin part in wavefunction 

 
Spin (two spins state) 

 
(a) 1S    (Symmetric state) 
 

1 2

1 2 1 2

1 2

( 1)
1

[ ]         ( 0)
2

( 1)

S

S

S

z z
M

z z z z M

M
z z

   



       

  
   

 

 
(b) 0S    (Anti-symmetric state) 
 

1 2 1 2

1
[ ]   ( 0)

2 Sz z z z M        , 

 
or 
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12
ˆ 1; 1,0, 1 1; 1,0, 1S SP S M S M        , 

 

12
ˆ 0; 0 0; 0S SP S M S M       . 

 
We need to get the antisymmetric wavefunction. Using the antisymmetrizer 
 

12

12 12

1ˆ ˆ ˆ(1 )
2
1 ˆ ˆ ˆ(1 )
2

total totalA P

P P 

 

  
 

 
we get 
 

total orbital spin    , 

 
or 
 

12 12
1ˆ ˆ ˆ ˆ(1 )
2

total

total orbital spinA P P       . 

 
(a) 1

S

spin S     (triplet, S = 1) 

 

12 12 1

12 1

1

1ˆ ˆ ˆ ˆ(1 )
2

1 ˆ ˆ(1 )
2

total S

total orbital S

S

orbital S

A S

orbital S

A P P

P

  

 

 







   

  

 

 

 
with 
 

12

1 ˆ ˆ(1 )
2

ˆ

A

orbital orbital

orbital

P

A

 



 



  (symmetric orbital wavefunction) 

 
and 
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12
1ˆ ˆ ˆ(1 )
2

A P  . 

 

The resultant wavefunction 1
A S

orbital S   is clearly antisymmetric under the interchange of 

particle. 
 
(b) 0spin S      (singlet, S = 0) 

 

12 12 0

12 0

0

1ˆ ˆ ˆ ˆ(1 )
2

1 ˆ ˆ(1 )
2

total A

total orbital S

A

orbital S

S A

orbital S

A P P

P

  

 

 







  

  

 

 

 
with 
 

12

1 ˆ ˆ(1 )
2

ˆ

S

orbital orbital

orbital

P

S

 



 



 (symmetric orbital wavefunction) 

 
and 
 

12
1ˆ ˆ ˆ(1 )
2

S P  . 

 

The resultant wavefunction 0
S A

orbital S   is clearly antisymmetric under the interchange of 

particle. 
 
______________________________________________________________________________ 
We now consider two orbital states  
 

a , b  

 
Symmetric orbital function is form as 
 

1 2 1 2

1
[ ]

2 a b b a       
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Antisymmetric orbital function can also be formed as 
 

1 2 1 2

1
[ ]

2 a b b a      . 

 
((Note)) Pauli’s principle of exclusion 
 
When  a b    (same state) 

 
Symmetric orbital state. 
 

1 2a b   

 
But no antisymmetric state is allowed (Pauli’s exclusion principle). We note that the orbital 
wavefunctions used here are orthogonal ones,  just like the case of hydrogen atom. 
 

Orbital (different from hydrogen atom) 
One-electron energy diagram (He+, He atom but one electron lost)) 

 
We need to use the perturbation theory (degenerate case). According to Sakurai and Napolitano, 
we define 
 

12
1ˆ ˆ ˆ(1 )
2

A P  . 

 

12
1ˆ ˆ ˆ(1 )
2

S P  . 

 

12 12
ˆ ˆP P    1

12 12
ˆ ˆP P  . 

 
2

12
ˆˆ 1P  . 

 

12 12

2
12 12 12

1ˆ ˆ ˆ ˆˆ ˆ(1 )(1 )
2
1 ˆ ˆ ˆ ˆ(1 )
2
0

SA P P

P P P

  

   



  

12 12

2
12 12 12

1ˆ ˆ ˆ ˆˆ ˆ(1 )(1 )
2
1 ˆ ˆ ˆ ˆ(1 )
2
0

AS P P

P P P

  

   


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1

12 12
ˆ ˆˆ ˆ(1, 2) (2,1)P O P O  ; ˆ (2,1)O  is a general operator  

 
ˆ

A A  , ˆ
S S  . 

 
The matrix 
 

ˆ ˆˆ ˆ
A in A inH A H A    , 

 
 

ˆ ˆˆ ˆ
S in S inH S H S    , 

 
ˆ ˆˆ ˆ

S in A inH S H A    ,  

 
ˆ ˆˆ ˆ

A in S inH A H S    . 

 

Suppose that  
2

ˆ ˆ ˆ(1,2) (2,1)
'in in in

e
H H H  

r r
. 

 
1

12 12
ˆ ˆ ˆ ˆ

in inP H P H    12 12
ˆ ˆ ˆ ˆ

in inP H H P   

 

12 12
ˆ ˆ ˆ ˆ

in inH P H P  

 

12 12

12 12

12 12

12 12 12 12

12 12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆ ˆ ˆ ˆ(1 )( )
2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2
1 ˆ ˆ ˆ ˆ( )
2
0

in in

in

in in

in in in in

in in

S H A P H P

P H P

P H H P

H H P P H P H P

H P P H

   

  

  

   

  



  

 
We note that 
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ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) 0in in inS H A A H S A H S        

 

12 12

12 12

12 12

12 12 12 12

12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆ ˆ ˆ ˆ(1 )( )
2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2

ˆ ˆ ˆ( )

in in

in

in in

in in in in

in in

S H S P H P

P H P

P H H P

H H P P H P H P

H P H

   

  

  

   

 

 

 

12 12

12 12

12 12

12 12 12 12

12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆ ˆ ˆ ˆ(1 )( )
2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2
ˆ ˆ ˆ

in in

in

in in

in in in in

in in

A H A P H P

P H P

P H H P

H H P P H P H P

H P H

   

  

  

   

 

 

 

12
ˆ ˆˆ ˆ ˆ ˆ

in in inS H S H P H J K         

 

12
ˆ ˆˆ ˆ ˆ ˆ

in in inA H A H P H J K          

 
14. Definition of Coulomb Integral and Exchange Integral 

Here we define the Coulomb integral 
 

2
* *

1 2 1 1 2 2 1 1 2 2
1 2

2 2

1 1 2 22
1 2

1 2

ˆ
in

s s s s

s s

I H

e
d d

e d d

 

   

 













r r r r r r
r r

r r
r r

r r

, 

 
and the exchange integral 
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12

2
* *

1 2 1 1 2 2 1 2 2 1
1 2

*
1 1 2 2 1 2 2 12

1 2
1 2

ˆ ˆ
in

s s s s

s s s s

K P H

e
d d

e d d

 

   

   













r r r r r r
r r

r r r r
r r

r r

 

 
where  
 

1 2 1 1 2 2,
s s

  r r r r , 

 

1 2 12 1 2 2 1
ˆ, s sP   r r r r , 

 
2

1 2

ˆ
in

e
H 

r r
 

 
Thus, we have 
 

ˆ ˆ 0
ˆ ˆ 0

S in S S in A

A in S A in A

H H I K

I KH H

   

   

   
       

 

 
or 
 

ˆ ( )

ˆ ( )

in S S

in A A

H I K

H I K

 

 

 

 

 

 
So that, 

S
  is the eigenket of ˆ

in
H  with eigenvalue I K , and 

A
  is the eigenket of ˆ

in
H  with 

eigenvalue I K .  
 
15. Formula of Coulomb integral 
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2
* *

1 2 1 1 2 2 1 1 2 2
1 2

2 2 2 2 4 *
1 1 1 1 2 2 2 2 1 2 1 1 1 2 2

0

2 2 2 2 2
1 1 1 1 2 2 2 2 1 2 ,0 ,0

0

1

( ) ( ) ( ) ( )

1
( ) ( ) ( , )( ) ( , ) ( , )

4
1

( ) ( ) ( , )( )
4

1
4

s s s s

l
m m

s s l l l

l m l

l

s s l l m

l m l

e
d d

r dr R r r dr R r G r r d Y dY

r dr R r r dr R r G r r

r

   

   


 






 



 



 







   

 

r r r r r r
r r

1

1

2 2 2 2
1 1 1 2 2 2 2 1 2 0

2 2 2 2 2
1 1 1 1 2 2 2 2 2 2 2 2

10 0

( ) ( ) ( , ) |

1
( )[ ( ) ( )]

s s l l

r

s s s

r

dr R r r dr R r G r r

r dr R r r dr R r r dr R r
r



 

 

 

  

 

 
where 
 

1 2
10 1 2 0 1 2

0

2 1
2

1
( , ) ( , )

|      
14 2 1

l l
l

r r
rG r r F r r

l
r r

r


 






  
  



 

 
or 
 

0 1 2 1 2 2 1
1 2

1 1
( , ) ( ) ( )lF r r u r r u r r

r r
      

 
Note that ( )u r  is the step function. 
 
16. Formula of Exchange Integral 
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2
* *

1 2 1 1 2 2 2 1 1 2
1 2

2 2 4 *
1 1 1 1 2 1 2 2 2 2 1 2 1 2 1 1 1 2 2 2

0

2 2 2
1 1 1 1 2 1 2 2 2 2 1 2 1 2

( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( , )( ) ( , ) ( , )
4

1
( ) ( ) ( ) ( ) ( ) ( ,

4

s s s s

l
m m

s s s s l l l

l m l

s s s s l

e
d d

r dr R r R r r dr R r R r G r r d Y d Y

r dr R r R r r dr R r R r G r r

   

   






 



  





    

 

r r r r r r
r r

,0 ,0
0

2 2
1 1 1 1 2 1 2 2 2 2 1 2 1 2 0

2 2
1 1 1 1 2 1 2 2 2 2 1 2 0 1 2

2 2
1 1 1 1 2 1 2 2 2 2 1 2 1 2 0

2
1 1

)

1 ( ) ( ) ( ) ( ) ( , ) |
4
1

( ) ( ) ( ) ( ) ( , )
4

( ) ( ) ( ) ( ) ( , ) |

l

l m

l m l

s s s s l l

s s s s l

s s s s l l

r dr R r R r r dr R r R r G r r

r dr R r R r r dr R r R r G r r

r dr R r R r r dr R r R r F r r

r dr R

 







 

















 

 

 
1

2
1 1 2 1 2 2 2 2 1 2 2 2 2 2 1 2

10 0

1( ) ( )[ ( ) ( ) ( ) ( )]
r

s s s s s s

r

r R r r dr R r R r r dr R r R r
r

 

  

 

 
_____________________________________________________________________________ 
17. Calculation of Coulomb integral using radial wavefunction 

Using the orbital wavefunction, 
 

'
2 21 1( ) ( ) ( , )m

p R r Y  r  with the state 1, 'l m , 

 
we calculate the Coulomb integral given by 
 



 

 

41 

 

2
* *

1 2 1 1 2 2 1 1 2 2
1 2

2 2 2 2 2 '* ' *
1 1 1 1 2 2 2 2 1 2 1 1 1 2 1 2 2 1 2 2 2 2

0

2 2 2 2
1 1 1 1 2 2 2 2 1 2 ,

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( , ) ( , ) ( , ) ( , ) ( , )

4
1

( ) ( ) ( , )
4

s p s p

l
m m m m

s p l l l

l m l

s p l l

e
d d

r dr R r r dr R r G r r d Y d Y Y Y

r dr R r r dr R r G r r

   

       







 



  





    

 

r r r r r r
r r

'* ' *
0 ,0 2 1 2 2 1 2 2 2 2

0

2 2 2 2 '* ' *
1 1 1 1 2 2 2 2 1 2 ,0 ,0 2 1 2 2 1 2 2 2 2

0

2 2 2 2
1 1 1 1 2 2 2 2 0 1 2

( , ) ( , ) ( , )

1
( ) ( ) ( , ) ( , ) ( , ) ( , )

4
1 ( ) ( ) ( , )
4

l
m m m

m l

l m l

l
m m m

s p l l m l

l m l

s p l

d Y Y Y

r dr R r r dr R r G r r d Y Y Y

r dr R r r dr R r G r r d

      

       






 



 





 



 

  

 

1

'* ' 0*
2 1 2 2 1 2 2 0 2 2

2 2 2 2 '* '
1 1 1 1 2 2 2 2 0 1 2 2 1 2 2 1 2 2

2 2 2 2
1 1 1 1 2 2 2 2 0 1 2

2 2 2 2
1 1 1 1 2 2 2 2 2 2 2

10 0

( , ) ( , ) ( , )

1 ( ) ( ) ( , ) ( , ) ( , )
4

( ) ( ) ( , )

1( )[ ( )

m m

m m

s p l

s p l

r

s p p

Y Y Y

r dr R r r dr R r G r r d Y Y

r dr R r r dr R r F r r

r dr R r r dr R r r dr R
r

     

   
 







 



 



  

 

 
1

2
2

0

( )]
r

r  
 
where 
 

1 2
1 2

( , )
( , )

2 1
l

l

F r r
G r r

l



  

 
and 
 

,0 ,0( , ) 4m

l l md Y       

 
18. Coulomb integral: calculation by Mathematica 

We calculate the Coulomb integrals with the combination of (1s) (nl). 
 

2
* *

1 2 1 1 2 2 1 1 2 2
1 2

( ) ( ) ( ) ( )s p s p

e
d d    

 r r r r r r
r r

 

 
by using Mathematica. 
________________________________________________________________________ 
(1s)(nl) electron configuration 

 
n l Coulomb integral 
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1 0 
25

34.0142 eV
8

Ze

a
  

 

2 0 
217

11.4221 eV
81

Ze

a
  

 

2 1 
28

1.7917 eV
243

Ze

a
  

 

3 0 
2815

5.41437 eV
8192

Ze

a
  

 

3 1 
2469

0.515293 eV
49152

Ze

a
  

 

3 2 
29

( 263937 1835008ln 2 917504ln 3) 0.0744525 eV
81920

Ze

a
     

 
where a is the Bohr radius of hydrogen atom;  
 

2

2 0.529177210903(80)Ba a
me mc 

    
ℏ ℏ Ż

 Ǻ, 

 
 is a fine structure constant, 
 

2 1
137.035999084(21)

e

c
  
ℏ

, 

 
and Ż  is the reduced Compton wavelength of electron; 
 

113.8615926800 10
2 mc




   
ℏ

Ż  cm. 

 
((MATHEMATICA PROGRAM-I))  Coulomb Integral 
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___________________________________________________________________________ 
19. Another calculation for Coulomb integral (example) 

Here we calculate the Coulomb integral in a little different way. This approach can be seen in 
many standard textbooks. 
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Fig.11 The position vectors 1r  and 2r  in the 3D real space. 

2 2
1 2 1 2 1 22 cosr r r r    r r   

 
We startwith a Coulomb integral defined by 
 

2 2
1 1 1 22

1 2
1 2

( ) ( )s s
I e d d

 



r r

r r
r r

 

 
Note that 
 

6
2 2 1 2

1 1 1 2 2

2 ( )1
( ) ( ) exp[ ]s s

B B

Z r rZ

a a
 


  

  
 

r r   

 
and 
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2 2
1 2 12 1 2 1 22 cosr r r r r     r r   

 
Thus, we get 
 

2 6 1 2
1 1 22

12

2
2 6 2 21 2

1 1 2 22 2 2
0 0 0 0 1 2 1 2

2 6 2 2 21 2
1 1 2 22 2

0 0 1 2

2 ( )1 1
( ) exp[ ]

2 21 sin( ) 4 exp( ) exp( )
2 cos

2 21 sin( ) 8 exp( ) exp( )

B B

B B B

B B B

Z r rZ
I e d d

a r a

Zr ZrZ d
e r dr r dr d

a a a r r r r

Zr ZrZ d
e r dr r dr

a a a r r

 



 
 

 

 




 

 


 

  
 

  




   

 

r r

2
0 1 2

2 6 2 1
1 1 1

0

2

2 cos

28 ( ) exp( ) ( )

5
8
5
4

B B

B

r r

ZrZ
e r dr K r

a a

Ze

a

Z
Ry








 









 

 
where 
 

1 2 1 2

2 2
1 20 1 2 1 2

1 1 2

2 1 2

sin

2 cos

2 /
        

2 /

r r r rd

r rr r r r

r r r

r r r

  



  


 


 




  

 
and 
 

1

1

1

1

1 2 1 22 2
1 2 2

1 20

1 2 1 2 1 2 1 22 22 2
2 2 2 2

1 2 1 20

2 2 2
2 2 2 2

10

2
( ) exp( )

2 2
exp( ) exp( )

2 22
exp( ) 2 exp( )

B

r

B Br

r

B Br

r r r rZr
K r r dr

a r r

r r r r r r r rZr Zr
r dr r dr

a r r a r r

Zr Zr
r dr r dr

r a a







  
 

     
   

   



 

 
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2

2 B

e
Ry

a
   (in units of c,g,s,) 

 
 
The above integral can be evaluated using the following Mathematica. 
 
((MATHEMATICA PROGRAM-II)) 
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______________________________________________________________________________
20. Exchange integral 

Using the orbital wavefunction, 
 

'
2 21 1( ) ( ) ( , )m

p
R r Y  r  with the state 1, 'l m  

 
we calculate the exchange integral given by 
 

2
* *

1 2 1 1 2 2 1 2 2 1
1 2

2 2 2
1 1 1 1 2 1 2 2 1 2 2 2

'* ' *
1 2 1 1 1 1 1 1 2 1 2 2 2 2

0

2 2 2
1 1 1 1 2 1 2

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

4

( , ) ( , ) ( , ) ( , ) ( , )

1
( ) ( ) ( )

4

s p s p

s p s p

l
m m m m

l l l

l m l

s p

e
d d

r dr R r R r r dr R r R r

G r r d Y Y d Y Y

r dr R r R r r dr

   



       





 





  





 

   



r r r r r r
r r

2 1 2 2 2 1 2 ,1 , '
0

2 2
1 1 1 1 2 1 2 2 1 2 2 2 1 2 1

2 2
1 1 1 1 2 1 2 2 1 2 2 2 1 2 1

2 3
1 1 1 1 2 1 2 2 12

10

( ) ( ) ( , )

1
( ) ( ) ( ) ( ) ( , ) |

4
( ) ( ) ( ) ( ) ( , ) |

1
( ) ( )[ (

3

l

s p l l m m

l m l

s p s p l l

s p s p l l

s p s

R r R r G r r

r dr R r R r r dr R r R r G r r

r dr R r R r r dr R r R r F r r

r dr R r R r r dr R
r

 





 















 

 


1

1

1
2 2 2 2 1 2 2 2

0

) ( ) ( ) ( )]
3

r

p s p

r

r
r R r dr R r R r



 

 

 
where 
 

2
1 2

1 11 2 1 2

1 2 1

2 2

1 1
2 1( , ) ( , )

     
4 2 1 1 1

2 1

l

l l

l

r
r r

l r rG r r F r r

l r r r
l r r



  
    

  
       

 

 
or 
 

2 1
1 2 1 2 2 1

1 1 2 2

1 1 1
( , ) [ ( ) ( )]

2 1

l l

l

r r
F r r u r r u r r

l r r r r

   
          

 

 
_____________________________________________________________________________ 
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*
1 1 2 2

4
(cos ) ( , ) ( , )

2 1

l
m m

l l l

m l

P Y Y
l


    




    

 

1 2
01 2

*1 2
1 1 2 2

0

1
( , ) (cos )

( , )
4 ( , ) ( , )

2 1

l l

l

l
m ml

l l

l m l

F r r P

F r r
Y Y

l



    







 











r r
 

 

, ' , '', ' , ', ' .l l m ml m l m d l m l m    n n  

 

,0 ,00,0 ,

0,0 .

1
.

4

l ml m

d l m

d l m

 





 

 





n n

n

  

 
or 
 

,0 ,0. 4 l md l m    n . 

 
21. Exchange Integral: calculation by Mathematica 

We calculate the exchange integrals with the combination of (1s) (nl). 
 

2
* *

1 2 1 1 2 1 1 2
1 2

(1 , ) ( ) ( ) ( ) ( )s nl nl s

e
K s nl d d    

 r r r r r r
r r

 

 
by using Mathematica. 
 
(1s) (nl) electron configuration 

 
Result 
___________________________________________________________ 

n l K(1s,nl) 
 

2 0 
216

1.19446 eV
729

Ze

a
  
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2 1 
2112

0.929028 eV
6561

Ze

a
  

 

3 0 
2189

0.313901 eV
32768

Ze

a
  

 

3 1 
2297

0.246636 eV
65536

Ze

a
  

 

3 2 
281

0.0134529 eV
327680

Ze

a
  

 

4 0 
222848

0.127329 eV
9765625

Ze

a
  

 

4 1 
290048

0.100366
48828125

Ze

a
  eV 

 

4 2 
232192

0.0071761
244140625

Ze

a
  eV 

 

4 3 
2704

0.000112095
341796875

Ze

a
  eV 

 

5 0 
2213475

0.0640463
181398528

Ze

a
  eV 

 

5 1 
22274875

0.0505558
2448880128

Ze

a
  eV 

 

5 2 
219975

0.00399524
272097792

Ze

a
  eV 

 

5 3 
212625

0.0000901839
7618738176

Ze

a
  eV 

 

5 4 
2

7325
6.01887 10

29386561536
Ze

a

   eV 
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((MATHEMATICA PROGRAM-III)) Exchange integral K 
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______________________________________________________________________________ 
22. Helium ground state; first-order perturbation for non-degenerate case 

We consider the first-order perturbation theory to evaluate the ground state energy for the 
(1s)(1s) electron configuration. We start with a unperturbed wavefunction for (1s)(1s) electron 
configuration, 
 

3 1 2
0 1 1

( )1
(1) (2) ( ) exp[ ]s s

B B

Z r rZ

a a
  




     

 
The ground state energy (unperturbed system 0H ); 
 

2 2
0 2 2 2 ( ) =-8 13.605693122 eV =-108.8455 eVG HE Z E Ry      

 
where  13.605693122 eVHE    (ground state energy of hydrogen atom) 
 

in
H (perturbation) is given by 

 
2

1 2
in

e
H 

r r
. 

 
The first-order perturbation: 
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(1)
0 0

ˆ

5
 

4
5

2 (-13.605693122  eV)
4

=34.014233 eV

G in

H

E H

Z E

 

 

   

  

 
where  2Z  . So that, we have 
 

(0) (1) 108.8455 eV 34.014233 eV 74.8313 eVG G GE E E        
 
Experimentally, we have  (0) (1) 79.0051521 eVG G GE E E     

 
_____________________________________________________________________________ 
Ionization energy: 
 

+He He ( e)     (the first ionization) 
 

2+He He ( e)      (the second ionization) 
 
or 
 

2+He He ( 2e)     
 
From the second ionization,  
 

2
2 4 13.605693122 54.422772 eVHI Z E       

 
Thus, we get 
 

1 2 79.0051521 eVI I   
 
or 
 

1 79.0051521 54.4177631 24.587389 eVI     

 
______________________________________________________________________________ 
23. Ground state (1s)(1s): variational method 

We use the variational method with a simple trial function. Here we choose a trial wave 
function to obtain an upper limit for the energy of the ground state of the helium atom. For this 
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end, we assume a radial function which is a real function, taking into account the screening effect. 
We choose a radial function for 1s electron as 
 

3/2 /
1,0 ( ) 2( ) r aR r e

a

 ɶ , 

 
where *

1,0 1,0( ) ( )R r R rɶ ɶ  (we assume the real function) and  is a constant, but not a fine structure 

constant. So, the normalized wavefunction is given by 
 

1 1,0

3/2 /

3/2 /

1
( ) ( )

4
1

2( )
4
1

( )

s

r a

r a

R r

e
a

e
a
























r ɶ

 

 

using the spherical harmonics of 0
0

1
( , )

4
m

lY  



  . Note that the radial trial function satisfies 

the condition of normalization, 
 

2
1,0 1,0

0

( ) ( ) 1R r R r r dr



 ɶ ɶ . 

 
The orbital (symmetric wavefunction) is 
 

1 2

1 2

/ /3/2 3/2
1,0 1 1,0 2

( )/3

( ) ( ) [2( ) ][2( ) ]

4( )

r a r a

r r a

R r R r e e
a a

e
a

 



 



 

 





ɶ ɶ

 

 
where the spin state is antisymmetric; S = 0. 
We start with the Hamiltonian, 
 

2 22 2 2
1 2

0
1 2 1 2

ˆ ˆˆ ˆ ˆ ( )
ˆ ˆ ˆ ˆ2 2in

Ze Ze e
H H H

m m
      


p p

r r r r
. 

 
We calculate the average energy of the ground state as 
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0 0 int 0
ˆ ˆ

GE H H    

 
with the trial function 
 

1 2

0 1 2 1 1 1 2

1,0 1 1,0 2

( )/3

( , ) ( ) ( )

1
( ) ( )

4
1

4( )
4

s s

r r a

R r R r

e
a



  





 







r r r rɶ ɶ

ɶ ɶ  

 
The energy average is as follows. 
 

2 2
* * 1

0 1 2 1, 1 1, 2 1, 1 1, 2
1

2 2
* * 2

1 2 1, 1 1, 2 1, 1 1, 2
2

2 2
* *1

1 1, 1 1, 1 2 1, 2 1, 2
1

2
* 2

2 1, 2

( ) ( )( ) ( ) ( )
2

( ) ( )( ) ( ) ( )
2

( )( ) ( ) ( ) ( )
2

( )(

s s s s

s s s s

s s s s

s

Ze
H d d

m r

Ze
d d

m r

Ze
d d

m r

d

   

   

   



 

 

 







 

p
r r r r r r

p
r r r r r r

p
r r r r r r

p
r r

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

2
*

1, 2 1 1, 1 1, 1
2

2 2
* 1

1 1, 1 1, 1
1

2 2
* 2

2 1, 2 1, 2
2

2 2
*

1, 1,

) ( ) ( ) ( )
2

( )( ) ( )
2

( )( ) ( )
2

2 ( )( ) ( )
2

s s s

s s

s s

s s

Ze
d

m r

Ze
d

m r

Ze
d

m r

Ze
d

m r

  

 

 

 



 

 

 

 







r r r r

p
r r r

p
r r r

p
r r r

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

  

 
or 
 

2 2
2 * *

0 1, 1,
10 0

2 2
2

1,0 1,0
0

2

1 ˆ ˆ2 ( )( ) ( ) 2 sin
4 2

2 ( )( ) ( )
2

( 2 )

s s

r

Ze
H r drR r R r d

m r

p Ze
R r R r r dr

m r

e
Z

a



  


 





 

 

  

 



p

ɶ ɶ  

 
noting that 
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2

2 2
2

2

2

2 2 2

2 2

( 1)
( )

( 1)

rp
r

l l
r r

ir r ir r r

l l
r

r r r

 

  
 

 
 

  


L
p

ℏ ℏ ℏ

ℏ ℏ

 

 

When 0l   for 1s state, we have  
2 2

2
2 r

r r


 


p

ℏ
. We also need to calculate the exchange 

interaction defined by  
 

2
* *

1 2 0 1 2 0 1 2
1 2

2
* *

1 2 1 1 1 2 1 1 1 2
1 2

2
2 2

1 2 1 1 1 2
1 2

( , ) ( , )

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) ( )

in

s s s s

s s

e
H d d

e
d d

e
d d

 

   

 
















r r r r r r
r r

r r r r r r
r r

r r r r
r r

ɶ ɶ

ɶ ɶ

ɶ

  

 
The above derivation will be discussed later in detail. The integral can be done by using 
Mathematica. 
 

2 2
1 1 1,0 1 1,0 1 2 2 1,0 2 1,0 2 0 1 2

2

ˆ ˆ( ) ( ) ( ) ( ) ( , )

5
8

in lH r dr R r R r r dr R r R r F r r

e

e







 ɶ ɶ

 

 
where 
 

0 1 2 1 2 2 1
1 2

1 1
( , ) ( ) ( )lF r r u r r u r r

r r
     , 

 
with ( )u r  is the step function. Thus, we get the average energy as 
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0

2

( )

5
[2 ( 2 ) ]

2 4
5

2  ( 2 )
8

in

E H

H H

e
Z

a

Ry Z




 

 



 

   

  

 

 
where 
 

2

  
2
e

Ry
a

    (Rydberg constant) 

 
Ry = 13.605693122994(26) eV,  

 
The minimization of ( )E  , 
 

( )
0

E 






, 

 
yields 
 

0
5

16
Z    . 

 
So, the ground state energy is 
 

2
0

1
( ) (5 16 )

128
E Z Ry     

 
By substituting Z = 2, we have 
 

0
5 27

2 1.6875
16 16

      

 

min
729

5.6953125 77.48867411455 eV
128

E Ry Ry       

 
So, we get the real ground state energy as 
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minGE E  

 
Note that the observed value of 

GE  is -79.00521521 eV. This value of 
GE  is the minimum energy 

required to remove both electrons from a helium atom. The result that the trial wave function gives 
the best energy value when 27 /16effZ   rather than 2 indicates that each electron screens the 

nucleus from the other electron, the effective nuclear charge being reduced by 5 /16  of an 
electronic charge. The wavefunction shows that the second electron does not see a charge Ze, but 
a lower charge 0 1.6875  . 

The average radius is evaluated as 
 

3 2
1,0

0

3 3 2 /

0

[ ( )]

4( )

3
2

r a

r drr R r

drr e
a

a




















ɶ

 

 
When  changes from 2Z    to 0 1.6875effZ    , the average radius from 0.75 a to 

0.889 a, favoring the screen effect.  
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Fig.12 The average energy 
H

H
 
 

  as a function of the parameter 1 . The 

minimum energy is -77.4886 eV at 1 1.6875  , which is a little higher than the 

experimental value; -79.0052 eV, which is consistent with the prediction derived 
from the variation method.  

 
((Comment by F. Seitz)) 
F. Seitz, The Modern Theory of Solids, 1st edition (McGraw Hill, 1940). 
 

One important fact that may be gained from this investigation is that the method of one-electron 
functions yields an energy which is in error by about 0.5 eV per electron, because it does not 
involve the necessary correlations. Since the binding energy of many solids is of the order of 1 eV 
per electron, we may expect that the cohesive energies derived from on-electron functions will 
often have a relatively high percentage of error. 
 
 
((MATHEMATICA PROGRAM-IV)) 
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68 
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______________________________________________________________________________ 
24. Ground state energy  (1s)(1s) electron configuration 

 
(1s) 0l  , 0m   

 
(1s) 0l  , 0m   

 
Total angular momentum 
 

0 0 0D D D     ( 0L  ) 

 
Orbital wavefunction 
 

1 11 2s s   

 
Note that the wavefunction should be symmetric. No antisymmetric orbital state is allowed. 
Since the total wavefunction should be antisymmetric, the spin wavefunction should be 
antisymmetric. 
 

0S     (singlet) 
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The total angular momentum is J = 0; 
 

0 0 0L SD D D    

 
The ground state is 
 

2 1 1 1
0 0

S

JS S 
    

 
with L = 0, S = 0 and J = 0. 
 
(1s)(1s) electron configuration 

 

 
 
Fig.13 Ground state for He I: (1s)(1s) electron configuration. 
 

1
0S   -24.5873890 eV  (spin singlet) 

 
for the ground state ( 1

0S ; singlet). Then we get 

 
I0(exp)= -24.5873890 eV+54.4228 eV) = 29.835 eV 

 
I0(cal) = 34.0112 eV 

 
((Ground state 1s1s)) Hund’s rule 

The electron configuration (1s)2 is the ground state with S = 0 (singlet spin state) since the 
orbital wavefunction should be symmetric. In this case, the average of spin over the ground state 
is zero.  

The helium ground state consists of two identical 1s electrons. The energy required to remove 
one of them is the highest ionization energy of any atom in the periodic table: 24.5874 eV. 
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The system is in the so-called singlet state with overall spin zero. Hence, the ground state of helium 
atom has overall electron spin zero. 
 

 
 
Fig.14 Occupancy of two spins in the (1s) orbital state with (1s) orbital state with z

spin state and with (1s) orbital state with z spin state. The spin state is 

antisymmetric with S = 0 (singlet), since the orbital wavefuncion is symmetric. 
 
Using the Hund's rule, we have S = 0. The orbital wavefunction for (1s)(1s) electron configuration 
should be even under the interexchange of particles. So that, we have singlet spin state (S = 0). 
The ground state is singlet.   
 
((Kanamori)) 

When the ground state is the singlet state, no Curie law can be obtained. 
 
______________________________________________________________________________ 
25. Energy level diagram for the (1s)(2s) electron configuration 

 
(1s) 0l  , 0m   

 
(2s) 0l  , 0m   

 
Total orbital angular momentum 
 

0 0 0D D D     ( 0L  ) 

 
(a) Symmetric orbital state 

 
Orbital wavefunction; 
 

1 2 2 11 2 1 2

1
[ ]

2
S s s s s         
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Spin state: antisymmetric state  
 

S = 0  (singlet) 
 
The total angular momentum is J = 0; 
 

0 0 0L SD D D    

 
So that, we have 
 

2 1 1 1
0 0

S

JS S 
    (L = 0, S = 0, J = 0) 

 
(b) Antisymmetric orbital state 

 

1 2 2 11 2 1 2

1
[ ]

2A s s s s         

 
Spin state: symmetric state  
 

S = 1  (triplet, Ms = 1, 0, -1) 
 
Since 0L  , the total angular momentum is 1J    
 

0 1 1L SD D D    

 
So that, we have 
 

2 1 3 3
1 1

S

JS S 
    (L = 0, S = 1, J = 1) 

 
The energy of the system which is the sum of the unperturbed system and perturbation is 
 

1 1 3.97161 eVJ K   , 1 1 4.761777 eVJ K    

 
where 1J  is defined as 1 113.6057 eVJ I   . 
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Fig.15 Energy level diagram for the (1s)(2s) electron configuration. The energy level of 

(1s)(2s) is the one as a result of perturbation, in addition to the one of unperturbed 
system. K1 = K(1s,2s). J1 = J(1s,2s) (definition). 
J1(exp)=-13.6057 eV +I1(exp) = -4.3697 eV.  
I1(exp)= 9.236 eV. 
K1(exp)= 0.3981 eV. 
I1(cal)=11.4221 eV. 
K1(cal) =1.19446 eV. 

1 1 3.97161 eVJ K    (spin singlet, 1
0S ). 

1 1 4.761777 eVJ K    (spin triplet, 3
1S ) 

 
((Note)) 
 

1s2s 3S 1 -4.76777415797 eV  (S = 1, orthohelium) 
1s2s 1S 0 -3.9716138666 eV  (S = 0, parahelium) 

 
((Hind’s law)) 

In the helium atom, Hund's first rule correctly predicts that the 1s2s triplet state (3S) is lower 
than the 1s2s singlet (1S). This is an almost universal generalization and contributes to Hund’s rule. 
 
______________________________________________________________________________ 
26. Heisenberg's spin exchange interaction (origin) 

Here we use the Pauli spin operators σ̂ ; 
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2

1 2 1 2
ˆ ˆ ˆ ˆ

4
  S S σ σ

ℏ  

 
with the Pauli matrices, 
 

0 1 0 1 0
ˆ ˆ ˆ,  ,  

1 0 0 1x y z

i

i i
  

     
            

 

 
The Dirac spin exchange operator is defined as 
 

12 1 2
1 ˆˆ ˆ ˆ(1 )
2

P    σ σ , 

 
and 
 

1 2 122

1 1ˆ ˆ ˆ(2 1)
4

P   S S
ℏ

. 

 
For 1S    
 

1 2 122

1 1ˆ ˆ ˆ1, (2 1) 1,
4
1

1,
4

S S

S

S M P S M

S M

    

 

S S
ℏ  

 
For 0S    
 

1 2 122

1 1ˆ ˆ ˆ0, 0 (2 1) 0, 0
4

3
0, 0

4

S S

S

S M P S M

S M

      

   

S S
ℏ  

 
We consider the effective spin Hamiltonian as 
 

1 22
ˆ ˆ ˆˆ ( )1eff

K
H I K


   S S

ℏ
  

 
with constant  and  to be determined. 
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For 1, SS M  (spin triplet) 

 

1 22
ˆ ˆ ˆˆ 1, [( )1 ] 1,

( ) 1,
4

( ) 1,

eff S S

S

S

K
H S M I K S M

I K K S M

I K S M







     

   

  

S S
ℏ

 

 
For 0, 0SS M   (spin singlet), 

 

1 22
ˆ ˆ ˆˆ 0, 0 [( )1 ] 0, 0

3
( ) 0, 0

4
( ) 0, 0

eff S S

S

S

K
H S M I K S M

I K K S M

I K S M







       

    

   

S S
ℏ

 

 
From these two equations, we get 
 

1
1

4
    ,  

3
1

4
   , 

 

leading to 
1
2

    and 2   . Then we have the final form of the effective spin 

Hamiltonian as 

 

1 22

1 2ˆ ˆ ˆˆ ( )1
2eff

K
H I K   S S

ℏ
, 

 

which is called as Heisenberg’s exchange interaction; interaction between 1Ŝ  and 2Ŝ . When 0K  , 

the system becomes ferromagnet. This Hamiltonian is considered to be responsible for spin-
ordering in ferromagnets. Note that parahelium atoms (S = 0) have no magnetic moment and form 
a diamagnetic behavior. On the other hand, orthohelium atoms (S = 1) have a magnetic moment 
and show a paramagnetic behavior. The difference between two systems is due to the degeneracy 
of the states. The singlet ground state has no magnetic moment since S = 0. 
 
((Note)) 

Note that Heisenberg's exchange interaction holds precisely as Dirac’s vector model when the 
following conditions are satisfied (Kubo and Nagamiya) 
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(a) The orbital wavefunctions are mutually orthogonal [each atomic orbital contains one 
electrons is equal to that of orbitals].  

(b) The eigenstates are determined only with respect to the spin sate,  
 
______________________________________________________________________________ 
27. Energy level diagram for the (1s)(2p) electron configuration 

 
(1s);  0l   (m = 0) 

 
(2p):  1l   (m = 1, 0, -1) 

 
Total angular momentum: 
 

1 0 1D D D     1L   

 
Note that the total spin angular momentum is 
 

1/2 1/2 1 0D D D D    

 
1S    (triplet, symmetric) 
0S     (singlet, antisymmetric) 

 
The total angular momentum J 
 
For S = 1 (triplet, symmetric), and L = 1,  
 

1 1 2 1 0D D D D D      

 
leading to J = 2, 1, and 0. 

 
The notation:  3 3 3

2 1 0,  ,  P P P  

 
So that, the orbital wavefunction should be antisymmetric; 
 

1 2 2 11 22 1

1
[ ]

2A s p p s          

 
For S = 0 (singlet, antisymmetric) and L = 0, 
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1 0 1D D D    

 
leading to J = 1. 

 
The notation:  1

1P . 

 
So that, the orbital wavefunction should be symmetric; 
 

1 2 2 11 22 1

1
[ ]

2
S s p p s         

 

 
 
Fig.16 Energy level diagram for the (1s)(2p) electron configuration.  

K2 = K(1s,2p). J2 = J(1s,2p). (definition). 
J2(exp)=-13.6057 eV +I2(exp)= -3.4963 eV. 
I2(exp)=10.1094 eV. 
K2(exp) = 0.1269 eV. 
I2(cal) = 1.7917 eV. 
K2(cal) = 0.929028 eV 

 
(1s)(2p) electron configuration (experimental result) 

 
1

1P   -3.36937 eV   (S = 0) 

 
3

0P   -3.6233 eV   (S = 1) 
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3
1P   -3.62329 eV 

3
2P   -3.62317 eV 

 
((Note)) Heisenberg’s principle of uncertainty 

Using the Heisenberg’s principle of uncertainty, the relaxation time is related to the exchange 
integra as 
 

152.59 10
2K

   
ℏ

 (s). 

 
using the value exp (1 , 2 ) 0.1269 eVK s p  . 

 
 
28. Possible degenerate case for (1s)(2s) and (1s)(2p) electron configuration 

I found an interesting problem in the book of L.I. Schiff. It is reasonable to assume that the 
unperturbed energy level of (1s)(2s) electron configuration is the same as that of (1s)(2p) electron 
configuration. If so and the repulsive Coulomb interaction is applied as a perturbation we need to 
apply the degenerate perturbation theory (the first order) to determine the energy shift. The matrix 
element  
 
((L.I. Schiff))  L.I. Schiff, Quantum Mechanics, 3rd edition (McGraw-Hill, 1968). 

Show that the (1s)(2p) configurations in helium can be treated separately from the (1s)(2s) 
configurations so far as the first-order energy-level calculation. 

 
 
Fig.17 Possibility of the degenerate states of (1s)(2s) and (1s)(2p) electron configuration. 

The shift in energy levels of the electron configurations, (1s)(2s), and (1s)(2p), in 
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the presence of perturbation, Coulomb repulsive interaction. Note that the energy 
level of (1s)(2s) and (1s)(2p) are degenerate in the unperturbed Hamiltonian.  

 
We consider the four states (degenerate states); 4 independent states with the same energy. For 

simplicity, here we use 
 

1 1 ,2 12 1 ,2
1ˆ ˆ ˆ(1 )
2s s s sS

S P     , 

 

1 1 ,2 12 1 ,2
1ˆ ˆ ˆ(1 )
2s s s sA

A P      

 

2 1 ,2 12 1 ,2
1ˆ ˆ ˆ(1 )
2s p s pS

S P     , 

 

2 1 ,2 12 1 ,2
1ˆ ˆ ˆ(1 )
2s p s pA

A P      

 
where 
 

1 1 ,2 1 21 2s s s s       

2 1 ,2 1 21 2s p s p       

 
In the presence of the Coulomb repulsive interaction  
 

2

1 2

ˆ
ˆ ˆin

e
H 

r r
 

 
we need to evaluate the matrix elements of this perturbation over the four states, since the four 
states are energetically degenerate. We show that 
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1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

1 1

1 1

2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

0 0 0
0 0 0
0 0 0
0

S in S in S in S inS A S A

A in A in A in A inS A S A

S in S in S in S inS A S A

A in A in A in A inS A S A

H H H H

H H H H

H H H H

H H H H

J K

J K

J K

       

       

       

       

 
 
 
 
 
 
 








2 20 0 J K

 
 
 
 
 

 

 

 

2 1 1 ,2 1 ,2

1 ,2 12 1 ,2

1 ,2 1 ,2 1 ,2 2 ,1

ˆ ˆˆ ˆ

1 ˆ ˆ ˆ
2
1 ˆ ˆ[ ]
2

S in s p in s sS

s p in in s s

s p in s s s p in s s

H SH S

H H P

H H

   

 

   



 

 

  

 

2 1 1 ,2 1 ,2

1 ,2 12 1 ,2

1 ,2 1 ,2 1 ,2 2 ,1

ˆ ˆˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

A in s p in s sA

s p in in s s

s p in s s s p in s s

H AH A

H H P

H H

   

 

   



 

 

 

 

2 1 1 ,2 1 ,2
ˆ ˆˆ ˆ 0A in s p in s sS

H AH S      

 

2 1 1 ,2 1 ,2
ˆ ˆˆ ˆ 0S in s p in s sA

H SH A      

 
where 
 

12 12

12 12 12 12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2
0

in in

in in in in

AH S P H P

H H P P H P H P

  

   



 

 
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) 0in in inSH A A H S AH S       
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12 12

12 12

12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆˆ ˆ ˆ(1 ) (1 )
2
ˆ ˆ ˆ

in in

in

in in

SH S P H P

P H P

H H P

  

  

 

  

 

12 12

12 12

12

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) (1 )
2
1 ˆ ˆˆ ˆ ˆ(1 ) (1 )
2
ˆ ˆ ˆ

in in

in

in in

AH A P H P

P H P

H H P

  

  

 

 

 
We show now 
 

1 ,2 1 ,2
ˆ 0s p in s sH     

 

1 ,2 2 ,1
ˆ 0s p in s sH    

 
((Proof)) 
 

1 2 1 ,2 1 1 2 1, ( ) ( )s s s s  r r r r   

 

1 2 1 ,2 1 1 2 2, ( ) ( )s p s p  r r r r  

 
where 
 

1 1, 0 0, 0 1,0
1

( ) ( ) ( , ) ( )
4s n l l mR r Y R r  


    r   

 

2 20 0, 0 20
1

( ) ( ) ( , ) ( )
4s l mR r Y R r  


  r  

 

2 2, 1 1, 2,1 1,( ) ( ) ( , ) ( ) ( , )p n l m mR r Y R r Y      r   

 
Parity operator ̂ : 
 

ˆ , ( 1) ,ll m l m    
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ˆ , , ( 1) ,ll m l m l m    n n n  

 
So that ,l mn has an even parity for l = 0 and odd parity for l = 1. 

 
2

* *
1 ,2 1 ,2 1 2 1 1 2 2 1 1 2 2

1 1

ˆ ( ) ( ) ( ) ( )A s p in s s s p s s

e
J H d d      

 r r r r r r
r r

 

 
2

* *
1 ,2 2 ,1 1 2 1 1 2 2 2 1 1 2

1 2

ˆ ( ) ( ) ( ) ( )B s p in s s s p s s

e
J H d d      

 r r r r r r
r r

 

 
These integrals remain unchanged under the change of parity; 
 

1 ,2 1 ,2

2
* *

1 2 1 1 2 2 1 1 2 2
1 2

2
* *

1 1 2 2 1 1 2 2
1 2

2
* *

1 2 1 1 2 2 1 1 2 2
1 2

2
* *

1 1 2 2 1 1 2 2
1 2

ˆ

1
[ ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( )]

1
[ ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( )

A s p in s s

s p s s

s p s s

s p s s

s p s s

J H

e
d d

e

e
d d

e

 

   

   

   

   






    
 





 





r r r r r r
r r

r r r r
r r

r r r r r r
r r

r r r r
r r

]

0

 

 
and  
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1 ,2 2 ,1

2
* *

1 2 1 1 2 2 2 1 1 2
1 2

2
* *

1 1 2 2 2 1 1 2
1 2

2
* *

1 2 1 1 2 2 2 1 1 2
1 2

2
* *

1 1 2 2 2 1 1 2
1 2

ˆ

1
[ ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( )]

1
[ ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( )]

B s p in s s

s p s s

s p s s

s p s s

s p s s

J H

e
d d

e

e
d d

e

 

   

   

   

   






    














r r r r r r
r r

r r r r
r r

r r r r r r
r r

r r r r
r r

0

 

 
since 
 

1 1 1 1( ) ( )s s  r r ,  (even function, l = 0) 

 

2 1 2 1( ) ( )s s  r r    (even function, l = 0) 

 

2 1 2 1( ) ( )p p   r r ,  (odd function, l = 1) 

 

,, , ( ) ( , )

( ) ,
nl l m

nl

n l m R r Y

R r l m

 



r

n
 

 
We note that for the parity operator ̂ ,  
 

ˆ , ( 1) ,ll m l m     

 
̂  n n , or ˆ ˆ    n n n  

 
For r r , we have 
 

ˆ, , , ,

( 1) ( ) ,

( 1) , ,

l

nl

l

n l m n l m

R r l m

n l m

 

 

 

r r

n

r

 

 
In other words, the wavefunction has an odd parity for l =0, 2, 4...., and an even parity for l = 1, 
3, 5,... 
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( ) , ,nlm n l m r r  

 
( ) ( 1) ( )l

nlm nlm   r r   
 
((Peeble)) Quantum mechanics 

Since in atomic hydrogen the 2s and 2p energy levels are degenerate (apart from small 
relativistic corrections), it is not surprising that the states approximated by the 1s2s configuration 
have energies fairly close to the 1s2p configuration. The latter has the higher energy (less tight 
binding energy), because the angular momentum contribution to the effective potential suppresses 
the 2p wavefunction near the nucleus ( 2 p r   at small r, 2s  is nonzero at 0r  ). In a classical 

picture, the 2s orbit with no angular momentum plunges toward the nucleus, while the orbits with 
nonzero angular momentum avoid the nucleus. Either way, we see that the 1s electron is more 
effective at screening a 2p electron from the attractive charge of the nucleus than it is at screening 
a 2s electron, because the 2p electron is less likely to be found near the nucleus. Thus, the 1s2p 
configuration is less tightly bound. 
 
______________________________________________________________________________ 
29. Energy level diagram for the (1s)(3s) electron configuration 

 
(1s)(3s) electron configuration (experimental result) 
 

1
0S   -1.66707 eV  (spin singlet) 

3
1S   -1.86892 eV  (spin triplet) 
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Fig.18 Energy level diagram for the (1s)(3s) electron configuration. K3 = K(1s,3s). J3 = 
J(1s,3s). (definition). 

 
-6.04697 eV+I3(exp)=-1.767997 eV 
 
I3(exp)= 4.27897 eV,  
K3(exp)= 0.0504625 eV 

 
______________________________________________________________________________ 
30. Energy level diagram for the (1s)(3p) electron configuration 

Energy level diagram for the (1s)(3p) electron configuration. 
 

1
1P   -1.50037 eV  (S=0) 

 
3

0P   -1.58028 eV  (S=1) 
3

1P   -1.58031 eV 
3

2P   -1.58032 eV 

 
J4(cal)= 0.519293 eV. 
K4(cal) =0.246636 eV. 

 
-6.04697 eV+J4(exp)=-1.540325 eV 
J4(exp)= 4.506645 eV,  K4(exp)= 0.03997 eV 

 

 
 
Fig.19 Energy level diagram for the (1s)(3p) electron configuration. K4 = K(1s,3p). J4 = 

J(1s,3p). (definition). 
 
______________________________________________________________________________ 
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31. Experimental results of exchange integral K from NIST Data comparison with those 

predicted from the calculations. 

 
Experimental results from NIST Data 
 
1s2s 
 

1
0S   -3.97161 eV   (S=0), 

3
1S   -4.76777 eV   (S=1) 

 
leading to 
 

(1 ,2 ) 0.3981K s s ≃  eV 
______________________________________________________________________________ 
1s2p 
 

1
1P   -3.36937 eV   (S=0) 

 
3

0P   -3.62317 eV 
3

1P   -3.62329 eV   (S=1) 
3

2P   -3.6233 eV 

 
leading to 
 

(1 , 2 ) 0.1269K s p   eV 
 
which the difference between the energy (3P1, denoted by yellow, the intermediate value) and 
energy (1P1, denoted by yellow). 
_____________________________________________________________________________ 
1s3s 
 

1
0S   -1.66707 eV   (S=0) 

3
1S   -1.86892 eV   (S=1) 

 
leading to 
 

(1 ,3 ) 0.100925K s s   eV 
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______________________________________________________________________________ 
1s3p 
 

1
1P   -1.50037 eV   (S=0) 

 
3

0P   -1.58028 eV 
3

1P   -1.58031 eV   (S=1) 
3

2P   -1.58032 eV 

 
leading to 
 

(1 ,3 ) 0.03997K s p ≃  eV 
 
______________________________________________________________________________ 
1s3d 
 

1
2D   -1.51331 eV   (S=0) 

 
3

1D   -1.51373 
3

2D   -1.51374   (S = 1) 
3

3D   -1.51374 eV 

 
lesding to 
 

(1 ,3 ) 0.000215K s d   eV 
 
___________________________________________________________________________ 
1s4s 
 

1
0S   -0.913818 eV   (S =0) 

 
3

1S    -0.99343 eV   (S = 1) 

 
leading to 
 

(1 ,4 ) 0.039806K s s   eV 
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___________________________________________________________________________ 
1s4p 
 

1
1P   -0.845319 eV   (S=0) 

 
3

0P   -0.879483 eV 
3

1P   -0.879496 eV   (S = 1) 
3

2P   -0.879497 eV 

 
leading to 
 

(1 ,4 ) 0.017089K s p   eV 
 
_____________________________________________________________________________ 
1s4d 
 

1
2D   -0.850379 eV   (S = 0) 

 
3

1D   -0.851296 eV  
3

2D   -0.851298 eV    (S = 1) 
3

3D    -0.851298 eV 

 
leading to 
 

(1 ,4 ) 0.0004595K s d   eV 
 
_____________________________________________________________________________ 
1s4f 
 

1
3F   -0.850379 eV   (S = 0) 

 
3

2F   -0.850380 eV 
3

3F   -0.850381 eV   (S = 1) 
3

4F    -0.850381 eV 

 
6(1 ,4 ) 2.0 10K s f    eV 
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_____________________________________________________________________________ 
1s5s 
 

1S0  -0.5761736871 eV  (S = 0) 
 

3S1  -0.6154172587 eV  (S = 1) 
 
 

(1 ,5 ) 0.019621786K s s   eV 
__________________________________________________________________________ 
1s5p 
 

1P1  -0.5415882703 eV   (S = 0) 
 

3P2  -0.559163613 eV 
3P1  -0.5591630523 eV   (S = 1) 
3P0  -0.559156178 eV 

 
 

3(1 ,5 ) 8.787391 10K s p    eV 
___________________________________________________________________________ 
1s5d 
 

1D  -0.54458526507 eV    (S = 0) 
 

3D3  -0.544726435181 eV 
3D2  -0.54472635569 eV    (S = 1) 
3D1  -0.544725182979 eV 

 
 
leading to 
 

5(1 ,5 ) 7.054531 10K s d    eV 
 
__________________________________________________________________________ 
1s5f 
 

1F3 -0.54423302844eV     (S = 0) 
 

3F3 -0.54423459272 eV 
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3F4 -0.544234211052 eV     (S = 1) 
3F2 -0.544233664238 eV 

 
 
leading to 
 

7(1 ,5 ) 5.91306 10K s f    eV 
_________________________________________________________________________ 
1s5g 
 

1G4 -0.5441721457584 eV    (S = 0) 
 

3G4 -0.544173011709 eV 
3G5 -0.544172668208 eV     (S = 1) 
3G3 -0.54417235591 eV 

 
leading to 
 

7(1 ,5 ) 2.612248 10K s g    
 
______________________________________________________________________ 
Calculated values of the exchange integral obtained by Mathematica 
 
n = 2 
 

(1 ,2 ) 1.19446 eVcalK s s   

 
(1 , 2 ) 0.929028 eVcalK s p   

______________________________________________________________________ 
n = 3 
 

(1 ,3 ) 0.313901 eVcalK s s   

 
(1 ,3 ) 0.246636 eVcalK s p   

 
(1 ,3 ) 0.0134529 eVcalK s d   

______________________________________________________________________ 
n = 4 
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(1 ,4 ) 0.127329 eVcalK s s   

 
(1 ,4 ) 0.100366

cal
K s p   eV 

 
(1 ,4 ) 0.0071761

cal
K s d   eV 

 
(1 ,4 ) 0.000112095

cal
K s f   eV 

________________________________________________________________________ 
n = 5 
 

(1 ,5 ) 0.0640463
cal

K s s   eV 

 
(1 ,5 ) 0.0505558

cal
K s p   eV 

 
3(1 ,5 ) 3.99524 10calK s d    eV 

 
5(1 ,5 ) 9.01839 10calK s f    eV 

 
7(1 ,5 ) 6.01887 10cvalK s g    eV 

_____________________________________________________________________________ 
32. Exchange integral (1 , )K s nl  

We make a plot of the exchange integral (1 , )K s nl as a function of l for experimental results 
(NIST Data) and calculated values, where n = 2, n = 3, n = 4, and n = 5. 
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(a) 

 
 

(b) 
 
Fig.20 (a) linear plot. (b) linear log plot. The exchange integral (1 , 2 )K s l  vs l. l =0 (s), and 

l = 1 (p). Calculated values of K (red solid circles) and the experimental values (red 
solid square).  

 

 
 

(a) 
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(b) 
 
Fig.21 (a) linear plot. (b) linear log plot. The exchange integral (1 ,3 )K s l  vs l. l.=0 (s), 1 

(p), and 2 (d). Calculated values (blue solid circle) and the experimental values 
(blue solid square). 

 
 

 
 



 

 

94 

 

(a) 
 

 
 

(b) 
 

Fig.22 (a) linear plot. (b) linear log plot. The exchange integral (1 , 4 )K s l  vs l. l.=0 (s), 1 
(p), 2 (d), and 3 (f). Calculated values (purple solid circle) and the experimental 
values (purple solid square).  
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Fig.23 (a) linear plot. (b) linear log plot. The exchange integral (1 ,5 )K s l  vs l. l.=0 (s), 1 

(p), 2 (d), 3 (f), and 4 (g). Calculated values (black solid circle) and the 
experimental values (black solid square).  

 
33. Scaling plot of 

3log[ (1 , )]n K s nl  as a function of l 

It is noted that the experimental values of the exchange integral (1 , )K s nl  drastically decreases 
with increasing the orbital angular momentum l. The first-order calculation values of the exchange 
path integral are rather larger than the experimental values for the same n and l, although they 
also tend to decrease drastically with increasing l. According to the book of H.A. Bethe and R. 

Jackiw, (Intermediate Quantum mechanics) it is predicted that the exchange integral can be 
expressed by a scaling form as 

 

3

1
(1 , ) ( , )K s nl G Z l

n
 ,  (scaling relation by Bethe and Jackiw) 

 
where ( , )G Z l  is a scaling function of Z and l, falls off quickly for large l. In other words, 

3 (1 , ) ( , )n K s nl G Z l  should depend only on l, if Z is given. We make a scaling plot of 
3

10log [ (1 , )]n K s nl  as a function of l for both experimental values and the first-order calculated 

values.  
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Fig.24 Scaling plot of 3

10log [ (1 , )(eV)]n K s nl  as a function of l for experimental values 

(denoted by blue solid circles) and first-order calculated values (denoted by red 
solid circles). All data are plotted in this figure where [n = 1 (l = 0), n = 2 (l = 0, 1), 
n = 3 (l = 0, 1, 2), n = 4 (l = 0, 1, 2, 3), and n = 5 (l = 0, 1, 2, 3,4), 

 
As shown in Fig.24, it seems that all the experimental data fall on a certain curve, suggesting the 
validity of scaling relation predicted by Bethe and Jackiw. We also note that the first-order 
calculated values nearly fall on a different scaling curve, except for the data at l = 2. In Fig.25, we 
make a plot of 3log[ (1 , )(eV)]C n K s nl   as a function of l, where we choose 1.2C   for the first-
order calculated values and 0C   for the experimental values. 
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Fig.25 Scaling plot of 3log[ (1 , )(eV)]C n K s nl   as a function of l for experimental values 

( 0C  , denoted by blue solid circles) and first-order calculated values ( 1.2C  , 
denoted by red solid circles). All data are plotted in this figure where [n = 1 (l = 0), 
n = 2 (l = 0, 1), n = 3 (l = 0, 1, 2), n = 4 (l = 0, 1, 2, 3), and n = 5 (l = 0, 1, 2, 3,4), 

 
We choose 1.2C  , so that the theoretical curve seems to overlap with the experimental data. If 
this assumption is correct, we may get the result as 
 

3 3
explog[ (1 , )] log[ (1 , )]thC n K s nl n K s nl   , 

 
or 
 

exp (1 , )
log[ ]

(1 , )th

K s nl
C

K s nl
  , 

 
leading to the final result as 
 

exp 1.2(1 , )
10 10 0.063

(1 , )
C

th

K s nl

K s nl

    . 
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What is the cause for such a ratio of K (≃  0.063) between experimental and theoretical values? It 
may be partly due to the polarization effect. In reality, the correct helium wavefunctions cannot be 
exactly of this simple form (the product of two independent single-particle wavefunctions), since 
the presence of one electron at a particular position affects the wavefunction of the other. The 
Coulomb repulsion due to one electron polarizes the charge distribution of the other such as to 
increase their mutual separation.  

Note that conventional second order perturbation theory would take account of the perturbation 
of the zero-order wavefunction, and hence of polarization. A rigorous second-order treatment is, 
however, much too tedious (Bethe and Salpeter).  
 
______________________________________________________________________________ 
34. Probability density for the symmetric and antisymmetric orbital wavefunctions 

 
((David Bohm)) 
From the book of D. Bohm, Quantum Theory 

The physical meaning of the exchange integral can be understood in terms of correlations 
between electronic positions that are inevitably present whenever the wave function is symmetric 
or antisymmetric. To demonstrate the existence of such correlations, we note that for the 
symmetric function, S

 , the wave function is a maximum when 1 2r r , while for the 

antisymmetric function, A
 , the wave function is zero for 1 2r r and very small when 1r  is close 

to 2r . Thus, a symmetric wave function implies an unusually large probability that the two electrons 

will be close together, and an antisymmetric function implies an unusually small probability that 
they will be close together. 

How are we to interpret the correlations in electronic position which are, as we have seen, 
associated with the symmetry of the orbital wavefunction? The interpretation is that for an 
antisymmetric wave function, the two electrons tend to be on opposite sides of the nucleus with a 
higher probability than would be present in a random distribution, whereas for a symmetric wave 
function, there is a statistical tendency to favor their being on the same side of the nucleus. Since 
the Coulomb energy of interaction between electrons, 2

12/e r , depends on the interelectronic 

distance, we see that for a symmetric wave function, this energy must be larger than for an 
antisymmetric wave function. Because the energy difference between symmetric and 
antisymmetric wave functions is 122K , we conclude that the exchange integral, 12K , is positive for 

a Coulomb potential. Moreover, we see also that the so-called "exchange energy" is merely a part 
of the usual Coulomb energy, resulting from the quantum-mechanical correlations of the relative 
positions of the two electrons. 
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(a) 
 

 
 

(b) 
 
Fig.26 Schematic diagram for the probability as a function of the relative distance 1 2r r  

for the 1D case. (a) Antisymmetric case. Two electrons tend to be present on 
opposite sides with a higher probability. (b) Symmetric case. Two electrons tend to 
be present on the same sides with a higher probability. 
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Fig.27 Schematic diagram on the repulsive Coulomb potential CV  between two electrons, 

as a function of relative distance 1 2r r  for the 1D case. The energy for the triplet 

spin state (S = 1) [antisymmetric orbital wavefunction]is lower than that for the 
singlet spin state (S = 0) [symmetric orbital wavefunction], as is predicted from the 
Hund’ rule. 

____________________________________________________________________ 
We now discuss the probability density of the symmetric wavefunction and antisymmetric 
wavefunction. We start with the antisymmetric orbital wavefunction. 
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Suppose that 
 

1 ,s n l    , 
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0
1 0 1,0 1,0

1
( ') ( ') ( ') ( ')

4
s Y R r R r


 r n , ,; ,0( ') ( ') ( ')m

n l nY R r r n . 

 
We also use the formula 
 

'* '*
' ' , ' , '( , ) ( , ) ( ) ( )m m m m

l l l l l l m md Y Y d Y Y          n n . 

 
Using 
 

'* 0
' 0

1
( , ) ( , )

4
m

lY Y   


  . 

 
We get the formula 
 

0'*
0 ,0 ,0( , ) ( , )m

l l md Y Y       , 

 
or 
 

,0 ,0( , ) 4m

l l md Y      , 

 
or 
 

*
,0 ,0( , ) 4m

l l md Y      . 

 
______________________________________________________________________________ 
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We now consider the case of l = 0 and m = 0. The probability density is 
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Similarly for the antisymmetric case, we have the spatial wavefunction for the symmetric case 
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The probability density is 
 

2
2 2

2 2 2 2
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We now consider the case of l = 0 and m = 0. The probability density is 
 

2
2 2 2 2 2

10 ,0 10 ,0
1ˆ' " ' " ', " ' " [ ( ') ( ") ( ") ( ')]
2A n nP r r d d A r r R r R r R r R r      r r  

 

((Probability density)) 

In the one-particle case, the probability is defined as 
 

2 2 2

222 ( ) ( )m

nl l

d r d

r R r Y d

  

 

 

 

r

n
  

 
In the present case (two particles), we define the probability as 
 

2 22 2' " ' ' " " ' "A Ad d r dr r dr d d        r r
, 

 
for the anti-symmetric case. We note that 
 

22 2' " ' "A AP r r d d     , 

 

is the probability of finding the system in the region of ( 'r to ' 'r dr ) and ( "r to " "r dr ). We can 
also call this tern as the probability density. Similarly, we det the probability density for the 
symmetric orbital wave function as 
 

22 2' " ' "S SP r r d d     . 
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We make a ContourPlot of S
P  and A

P  in the ( ', ")r r  plane with ' 0r   and " 0r  , using 

Mathematica. The probability density for the (1s)(2s) electron configuration, can be evaluated as 
 

A
P   

 

 
 

S
P    

 
 
where we use 1'r r  and 2"r r  for the convenience. 
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(b) 

 

 
 

(b) 
 
Fig.28 (a) and (b). ContourPlot of the probability density A

P  for the (1s)(2s) electron 

configuration in the ( , )x y  plane. 1 /x r a . 2 /y r a . 0l   for 2s electron 

configuration. Note that 0
A

P   for .y x   
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Fig.29 Plot3D of the probability density A

P  for the (1s)(2s) electron configuration in the 

( , )x y  plane. 1 /x r a . 2 /y r a . 0l   for 2s electron configuration. Note that 

0
A

P   for .y x   
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(a) 
 

 

 
 

(b) 
 
Fig.30 (a) and (b). ContourPlot of the probability density S

P  for the (1s)(2s) electron 

configuration in the ( , )x y  plane. 1 /x r a . 2 /y r a . 0l   for 2s electron 

configuration. Note that S
P  has a maximum on the line 0.42.y x    
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Fig.31 DensityPlot 3D of the probability density S

P  for the (1s)(2s) electron configuration 

in the ( , )x y  plane. 1 /x r a . 2 /y r a . 0l   for 2s electron configuration. Note 

that S
P  has a maximum on the line 0.42.y x    

 
35 Interaction between magnetic dipole moments 

The ordered state of magnetic moment can be caused by the interaction between magnetic 
moment of atoms. The origin of such phenomenon is the exchange interaction due to the 
combination of electrostatic Coulomb force and the Pauli’s exclusion principle. In classical physics, 
the possible origin is considered to be the interaction between magnetic (dipole) moment  
 

1 2 1 12 2 123 5
12 12

1 3
( )( )

r r
   μ μ μ r μ r , 

 
where 1μ  and 2μ  are the two magnetic moment and 12r is a positional vector connecting 

between 1r  and 2r . The magnitude of this interaction can be estimated as 1 K (at most) 

when 1  and 2  are on the order of Bohr magneton and the distance 12r  is on the order of 

2Ǻ. On the other hand, the Curie temperature (ferromagnet) or Neel temperature 
(antiferromagnet), which are the transition temperature from disordered state to the ordered 
state, is a measure for the energy difference (per atom). It is over 1000 K. So that, such a 
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large difference can be explained by classical physics. The origin of ferromagnetism is 
understand only based on the quantum mechanics. The answer for this was clearly given 
by Heisenberg based on the quantum mechanics, for the first time. 
 
36. Heisenberg model in magnetism: Origin of exchange interaction 

The exchange field gives an approximate representation of the quantum-mechanical exchange 
interaction 
 

2ex i j

i j

E J


   S Sɶ , 

 
where the sum is over nearest neighbor pairs. J

~  is the exchange interaction and is related to the 
overlap of the charge distribution of spins i, j. This equation is called the Heisenberg model. The 
interaction related to the i-th spin is given by 
 

| 2 ( ) ( )ex i B iE Jz g i        S S S Bɶ , 
 
where z is the number of nearest-neighbor spins and B(i) is the exchange field seen by the i-th spin, 
 

2
( )

B

Jz
i

g
   B S

ɶ
. 

 

 
 
Fig.32 Mean field (molecular field) B(i) applied the spin Si (at the center in this Fig), 

arising from the exchange interaction with the surrounding spins (in this case, z = 
4). B is the applied magnetic field. 

 
The magnetization M is given by 
 

B Ag N   M S . 
 

B+BHiL

SHiL
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Then the exchange field is 
 

2 2

2 2
( )

( )B B A B A

Jz zJ
i A

g g N g N  
   


M

B M M
ɶ ɶ

, 

 
which means that 
 

AB Ng

Jz
A 22

~2


 . 

 
In the presence of a mean field, the molar magnetization can be described by 
 

][ AMB
T

C
M M  , 

 
where CM is the Curie constant and is given by 
 

B

BA
M

k

SSgN
C

3
)1(22 




. 

 
From this equation M can be derived as 
 

M

M

C
M B

T C A



. 

 
The corresponding susceptibility is 
 







T

C

ACT

C

B

M M

M

M
M . 

 
The Curie-Weiss temperature  is given by 
 

)1(
3

~2~2
3

)1(
22

22




 SS
k

Jz

Ng

Jz

k

SSgN
AC

BABB

BA
M 


. 

 
Note that  is positive for ferromagnetic exchange interaction ( J

~ >0) and  is negative for 
antiferromagnetic interaction ( J

~ >0). From this equation J
~  is expressed in terms of  as 

 

)1(2
3~





SzS

k
J B . 
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From this expression, one can evaluate the value of exchange interaction between the nearest 
neighbor interactions. 

The dipole-dipole interaction was considered to the main origin of magnetism before the 
appearance of Heisenberg’s theory. The magnitude of this interaction is on the order of 2 /B Ǻ3 = 

0.0537 meV. On the other hand, the exchange integral is on the order of 86.17B ck T   meV for the 

Curie temperature 1000 cT K .  

 
((Note)) 1 meV = 11.60451812 K. 
 
_____________________________________________________________________________ 
37.  Impact on Japanese young students from lectures by Heisenberg and Dirac to Japan 

(1929) 

Dr. Yoshio Nishina had returned to Japan in December 1928, after seven years of studying in 
Europe, six years of them at Bohr’s institute in Copenhagen, where he had done important 
theoretical research with Oskar Klein (Klein-Nishina formula, constituting one of the first 
successful application of the Dirac equation). He had joined in 1918 at the Institute for Physical 
and Chemical Research (Riken) in Tokyo, where he began studying physics under Hantaro 
Nagaoka. He had financed his stay abroad from Riken between 1921 and 1928.  

Heisenberg and Dirac’s visit in September of 1929 would be the first major opportunity for 
Japanese physicists to meet highly successful European physicists who directly contributed to the 
birth of the new quantum mechanics, and Nishina made every effort to make their visit successful. 
He knew through his Copenhagen connections that Heisenberg and Dirac would give lectures at 
American Universities in the Spring of 1929, and asked them whether they could visit Japan to 
give some lectures before returning to Europe. 

From September 2 to 7 of 1929, Heisenberg and Dirac each gave six lectures at Riken and 
Tokyo Imperial University (currently, University of Tokyo). They presented their lectures on 
recent developments in physic. Details of these lectures are provided in Table III. These lectures 
profoundly influenced many young Japanese physicists, including Tomonaga (Sin-itiro) and 
Yukawa (Hideki). 
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Fig.33 Werner Heisenberg (fourth from the left) and Paul Dirac (third from the right) who 

visited Japan in the Fall of 1929. Their lectures on new quantum mechanics 
stimulated the minds of young Japanese physicists. Yoshio Nishina (first from the 
left) carefully arranged their visit, translated their lectures for Japanese audiences, 
and later edited a book containing these translations. From left to right, Yoshio 

Nishina、Masao Katayama, Masatoshi Okouchi, Heisenberg, Hantaro Nagaoka, 

Dirac, Koutaro Honda, and Yoshikatsu Sugiura. All these Japanese scientists in this 
picture, had experience for study (research) abroad in Europe before 1929. 
From the book of Dong-Won Kim, Yoshio Nishina: Father of Modern Physics 

in Japan (Taylor& Francis, 2007) 

 
During the six days of lectures, Nishina stood beside Heisenberg and Dirac, translating their 

lectures into Japanese and adding explanations when necessary.  
 
Table III List of titles of lectures given by Heisenberg and Dirac at Tokyo Imperial 

University and Riken in September of 1929. 

 
September 02, 1929 (Monday)  Riken 
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Heisenberg: The indeterminacy (uncertainty)-relations and the physical Principles of 

quantum theory. 
Dirac: The principles of superposition and the two-dimensional harmonic 

oscillator. 
 
September, 03, 1929 (Tuesday) Tokyo Imperial University (currently, University of 

Tokyo) 
 

Heisenberg: Theory of ferromagnetism (helium atom). 
Dirac:  The basic of statistical mechanics (density operator) 

 
September, 04, 1929 (Wednesday)  Tokyo Imperial University 
 

Heisenberg: Theory of ferromagnetism (helium atom, continued) 
Dirac:  Quantum mechanics of many-electrons system 

 
September, 05, 1929 (Thursday)  Tokyo Imperial University 
 

Heisenberg: Theory of conduction (Bloch theorem by F. Bloch) 
Dirac:  Quantum mechanics of many-electrons system (continued) 

 
September, 06, 1929 (Friday)  Tokyo Imperial University 
 

Heisenberg: Retarded potential in the quantum theory (with W. Pauli) 
Dirac:  Relativity theory of electron 

 
September, 07, 1929 (Saturday)  Tokyo Imperial University 
 

Heisenberg: Retarded potential in the quantum theory (with W. Pauli, continued) 
Dirac:  Relativity theory of electron (continued) 

 
Young physicists including Hideki Yukawa (Nobel laureate in Physics, 1949) and Sin-ichiro 

Tomonaga (Nobel laureate in physics, 1965) were strongly impressed by their lectures on the 
developments of quantum mechanics. When Werner Heisenberg and Paul Dirac visited Japan in 
September, 1929, Tomonaga was 23 years old and Yukawa was 22 years old, while Heisenberg 
was 27 years old and Dirac was 26 years old. Both Tomonaga and Yukawa (physics students at 
Kyoto University) attended the lectures of Heisenberg and Dirac in Tokyo, Japan (University of 
Tokyo and Riken). According to the book of Tomonaga, Quantum Mechanics and me, In Japanese), 
both Heisenberg and Dirac presented the following lectures at the University of Tokyo and Riken 
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at that time. Note that as collaborators of Heisenberg, W. Pauli was 29 years old, and F. Bloch was 
23 years old. 
 
((Hideki Yukawa)) 
From the book of H. Yukawa, Tabibito (The Traveler), translated by L. Brown and R. 

Yoshida from Japanese to English (World Scientific, 1982) 

Although I (Hideki Yukawa) wan only 22 years old, I was not lacking in years. At that time, most 
of the physicists who were contributing to the development of quantum mechanics were in their 
twenties, some only five or six years older than I. Four of the most outstanding scientists: 
Heisenberg, Dirac, Pauli, and Fermi were all born in the period 1900 - 1902, and they all had 
attained major achievements by about 23 or 24 years of age. In the Fall of 1929, Heisenberg and 
Dirac both visited Japan; attending their lectures was a great stimulus to me, 
 
((S. Schweber)) 

From the book of Schweber, QED 

As undergraduate students of Kyoto University, Tomonaga (Sin-itiro) and Yukawa (Hideki) 
embarked on a project to learn quantum mechanics. They read the papers of Heisenberg, Dirac, 
Jordan, Schrödinger, and Pauli that had laid the foundations of quantum mechanics, and explained 
them to each other. Shortly after their graduation from Kyoto University, the two traveled to Tokyo 
to attend the lectures that Heisenberg and Dirac gave at Riken and the Tokyo Imperial University 
(University of Tokyo) during their visit to Japan in 1929. These lectures made a strong impression 
on Tomonaga and Yukawa.  
 
((D. Cassidy)) 
From the book of D. Cassidy, Beyond Uncertainty; Heisenberg, Quantum Physics, and the 

Bomb (Bellevuw Literary Press, 2009). p.184. 

As a condition for accepting the appointment to Leipzig in 1927, Heisenberg had negotiated 
an eight-month leave of absence in order to accept a series of lecture invitations from abroad. With 
bookings at MIT and the University of Chicago, and then in Japan and India, Heisenberg boarded 
a ship at Bremerhaven in early March 1929 for his first trans-Atlantic trip. He eagerly anticipated 
the journey, which would ultimately take him around the world; and he looked forward to meeting 
fellow visitors Sommerfeld, Dirac, and Hund “over there among the wild Americans.” But less 
than a day out to sea, the ship was trapped for several days by an early spring fog and a solid sheet 
of ice. Adrift in the unending fog prison, Heisenberg began to entertain second thoughts. He wrote 
to Bohr of how much he would rather spend his holiday in his usual fashion, with his youth group 
at their Bavarian ski hut “instead of traveling all the way to America—but one has to try 
everything.” 

The trip must have been exhausting for the 27-year-old. After delivering the MIT and Chicago 
lectures, Heisenberg traveled to Washington for a few days to lead a session on atomic structure 
and spectral lines at the American Physical Society meeting. From there he went west to climb in 
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the Rocky Mountains, writing excitedly of the unanticipated beauty of the mountain landscape, 
which reminded him of home; then through Colorado and Arizona to the Grand Canyon; on to 
Pasadena for a week of lectures at the California Institute of Technology and touring in the Sierras; 
then back to Chicago by June. From Chicago he wrote to Bohr that in this “unsettled life” he 
traveled 1,000 kilometers (620 miles) per week—and in those 

In Chicago, Heisenberg stayed with German-American physicist Carl Eckart. When not 
lecturing and working, he sailed and swam in Lake Michigan, went on a fishing expedition to the 
northern Wisconsin lakes with Barton Hoag, a Chicago experimentalist, stopped in Madison, 
(Wisconsin), to see Dirac, and engaged in tennis and music with numerous other physicists. On 
July 20, he described for Pauli the rest of his exhausting schedule: he would meet Dirac in 
Yellowstone National Park in mid-August and leave for Hawaii and Japan, where they would stay 
and lecture until mid-September. While Dirac headed from Japan through Siberia to Moscow, 
Heisenberg would travel through China to India to lecture, tour, and visit the Himalayas, finally 
arriving back in Leipzig in time to begin the winter semester in November 1929. “Then I hope to 
be able to really do physics once again.” 

Aside from mountaintops, the series of ten lectures that Heisenberg delivered to the University 
of Chicago in March and April 1929 were the high point of his tour. The lectures were the basis 
of his textbook, The Physical Principles of the Quantum Theory, which was probably the most 
influential and widely read early account of the Copenhagen doctrine and the inspirations behind 
it. In Eckart’s translation from the German, the text also marked the transition of the name of his 
famous principle in English usage from “indeterminacy” to “uncertainty.” 
 
38. Conclusion 

Using the quantum mechanics which was established in 1920’s, Heisenberg (one of the 
founders of quantum mechanics) tried to calculate the energy levels of helium atom using the 
Schrődinger equation. There are two electrons outside the nucleus (two protons and two neutrons). 
The problem is much complicated compared to the energy level of hydrogen atom where there are 
one electron outside the nucleus (one proton). There is a repulsive Coulomb interaction between 
two electrons. These two electrons are fermion with spin 1/2. According to Pauli’s exclusion 
principle, the total wave functions of two electrons should be antisymmetric under the exchange 
of two particles. This wavefunction is the product of spin part and spatial part (orbital). The spin 
part is symmetric for the total spin S = 1 (ortho-helium), while it is anti-symmetric for spin S = 0 
(para-helium). Correspondingly, the orbital wavefunction of two particles should be symmetric for 
S = 0, while it should be anti-symmetric for S = 1. The Hamiltonian does not include any terms 
related to the spin interactions. Heisenberg showed that the energy levels of the symmetric orbital 
wavefunction is different from that of the antisymmetric orbital wavefunction. Such a large 
difference between these energy levels originates from the electrostatic energy. Taking into 
account of the spin-dependence on the energy level, Heisenberg reached a striking conclusion that 
the origin of ferromagnet is from the Coulomb electrostatic interactions (spectral term). Finally, 
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the origin of the extremely large molecular field (the Weiss field) can be understood in terms of 
quantum mechanics. 

Heisenberg interpreted the Weiss field as an exchange effect. An exchange force is essentially 
caused by a static Coulomb interaction, and its magnitude can be much larger than that of the 
magnetic interaction. This exchange force appears in the form of a spin-spin interaction because 
the orbital states of the electrons naturally impose a limitation on the spin states according to the 
Pauli’s exclusion principle. If it is a good approximation to assume that the electron carrying 
magnetism in a crystal have orbitals localized on the atom, then it is reasonable to think that their 
exchange effect can be expressed as the following sum 
 

,

ˆ ˆˆ 2exch ij i j

i j

H J   S S . (1) 

 
This is precisely what Heisenberg assumed in his theory of ferromagnetism. If we consider that 
the spin of each atom containing a number of electrons obeys Hund’ rule, then i

S  in Eq.(1) is the 

atomic spin in this sense. We note that Eq.(1) holds precisely as Dirac’s vector model when the 
following conditions are satisfied (Kubo and Nagamiya) 
 
(a) The orbital wavefunctions are mutually orthogonal [each atomic orbital contains one 

electron is equal to that of orbitals].  
(b) The eigenstates are determined only with respect to the spin sate,  
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APPENDIX-A Properties of spherical harmonics 

We mote that 
 

1 2
01 2

1
( , ) (cos )l l

l

F r r P 

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r r
 

 
where 
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(cos )lP   is called the Legendre polynomial.  
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We also note that 
 

*( , ) ( 1) ( , )m m m

l lY Y      

 
*( , ) ( 1) ( , )m m m

l lY Y       

 
from the relation 
 

ˆ , ( 1) ,ml m l m     (time reversal operator) 

 
or 
 

ˆ , ( 1) ,ml m l m  n n  
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or 
 

ˆ , ( 1) ,ml m l m   n n  

 
We use the formula 
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The associate Legendre polynomial 
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APPENDIX-II  Spherical Harmonics ( , )m

lY    

*( , ) ( 1) ( , )m m m

l lY Y       with m>0. 

_____________________________________________________________________________ 
l = 0, m = 0 
 

 
______________________________________________________________________________ 
l = 1, m = 0, 1 
 

 
 
______________________________________________________________________________ 
l = 2, m = 2, 1, 0 
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______________________________________________________________________________ 
l = 3, m = 0, 1, 2, 3 
 

 
______________________________________________________________________________ 
l = 4, m = 0, 1, 2, 3, 4 
 

 
______________________________________________________________________________ 
l = 5, m = 5, 4, 3, 2, 1,0 
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APPENDIX-III Radial wavefunction  , ( )n lR r  

 
l = n-1, n-2,…., 0. 
______________________________________________________________ 
n = 1.  l = 0 (s) 

 

 
_______________________________________________________________ 
n = 2.  l = 0 (s), 1(p) 

 

 
______________________________________________________________________ 
n = 3.  l = 0 (s), 1(p), 2 (d) 
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__________________________________________________________________________ 
n = 4.  l = 0 (s), 1(p), 2 (d), 3 (f) 

 

 
______________________________________________________________________________ 
n = 5.  l = 0 (s), 1(p), 2 (d), 3 (f), 4 (g) 
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___________________________________________________________________________ 
APPENDIX-IV Selection rule for the transition between states 

We have the selection rule for the transition between electron energy levels 
 

1L   , 0S   
 
The latter means that only transitions (singlet   singlet, and triplet  triplet) occur. No transition 
is allowed between the singlet and triplet spin states. So that, it is believed that there exist two 
kinds of helium, orthohelium (triplet) and parahelium (singlet). 
 
In order to get the section rule for 1L    and 0S   we start with the transition matrix 
elements 
 

ˆ', ' ,l m l mr ,  

 
and 
 

' ˆ', ,S SS m S mr  

 
for the orbital angular momentum and spin angular momentum. Note that the perturbation 
Hamiltonian is due to an electric dipole moment (proportional to r̂ ). Clearly, the perturbation is 
independent of the spin operator. So that, we have the selection rule 
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' 0S S S     for the spin states.  
 
How about the selection rule 'l l l   for the orbital angulart momentum? Using the properties 
of the parity operator, we have 
 

ˆ , ( 1) ,ll m l m   , 

 
or 
 

2

( 1)ˆ, , ( 1) , , ( 1)
( 1)

l
l l

l
l m l m l m l m 

    


, 

 
or 
 

ˆ, ( 1) ,ll m l m   , 

 
with 
 

2 ˆˆ 1   
 
and 
 

ˆ ˆˆ ˆ   r r  ( r̂ ; odd parirty) 
 
Thus, we have 
 

'

'

' 1

ˆ ˆˆ ˆ ˆ', ' , ( 1) ', ' ,

ˆˆ ˆ( 1) ( 1) ', ' ,

ˆ( 1) ', ' ,

l

l l

l l

l m l m l m l m

l m l m

l m l m

 

 





 

 

  

 

r r

r

r

 

 
leading to the selection rule; . 
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Spherical harmonics 
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Spherical harmonics 
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x iy
T

 



   

 

( 1)
0

3ˆ ˆ
4

k

qT z



      ( 1)

0

4 ˆ ˆ
3

k

qT z
 

   

 

( 1)
1

ˆ ˆ3ˆ ( )
4 2

k

q

x iy
T







    ( 1)

1

ˆ ˆ4 ˆ
3 2

k

q

x iy
T

 



  

 
 

( 1) ( 1) ( 1)
1 1 0

( ) ( )4 ˆ ˆ ˆˆ [  ]
3 2 2

x y x yk k k

q q z q

i i
T T T

   
  

 
  

e e e e
r e  

 
Note that  



 

 

129 

 

( ) 0
0Re[ ( )] [cos( ) sin( ) ]

2 2
x yi kz t

x y

i E
E e kz t kz t

   
   

e e
e e  

(Right-hand polarized state) 
 

( ) 0
0Re[ ( )] [cos( ) sin( ) ]

2 2
x yi kz t

x y

i E
E e kz t kz t

   
   

e e
e e  

(Left-hand polarized state) 
 

0 0Re[ ] cos( )i t

z zE e E t e e   

(linearly polarized state) 
 
The matrix element: 
 

( 1)
1

( 1) ( 1)
1 0

( 1) ( 1) ( 1)
1 1 0

( )4 ˆˆ', ' , [ ', ' ,
3 2

( ) ˆ ˆ', ' ,  ', ' , ]
2

4 ˆ ˆ ˆ[ ', ' , ', ' ,  ', ' , ]
3

x y k

q

x y k k

q z q

k k k

q q z q

i
l m l m l m T l m

i
l m T l m l m T l m

l m T l m l m T l m l m T l m








 
 

  
    





 

  

e e
r

e e
e

e e e

 

 
where 
 

2
x yi






e e
e ,  

( )

2
x yi




 

e e
e  

 

( 1)
1

( 1) ( 1)
1 0

4 ˆˆ', ' , [ ', ' ,
3

ˆ ˆ', ' ,  ', ' , ]

k

q

k k

q z q

l m l m l m T l m

l m T l m l m T l m

 
 

 
  

  

   

ε r ε e

ε e ε e  

 
We use the Wigner-Eckart to find the selection rules 
 

( )ˆ', ' , 0k

ql m T l m   

 
only if 
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'm m q   
 

' ,  1, ,  l l k l k l k          (triangle inequality) 

 
((Note)) 
 

1k   
1,  0,  1q    

 
' ,  1,  1m m m m    

 
' 1,  , 1l l l l       (triangle inequality) 

 

Since (1)
q̂T  is the odd parity, the transition for 'l l  is not allowed.  

 


