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We discuss the Boltzmann transport equation which is very useful in understanding the 

transport properties such as electrical conductivity, thermal conductivity, and thermoelectric 

power. This equation is used to determine the distribution function of particles (electrons) in 

the phase space ( , )r k phase space. Because of the Heisenberg’s uncertainty principle, the 

use of this equation is limited for the transport equation in the quantum mechanics. The 

number of particles in the range [r and r+dr, p and p+dp], 

 

( , , )dN f t d d p r r p . 

 

In thermal equilibrium ( , , )f tp r  is the Fermi-Dirac distribution function. The system is 

deviated from the thermal equilibrium in the presence of a perturbation such as the electric 

field and temperature gradient. 

 

((Note)) 

Here we use the following notation 
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instead of using 
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In other words, the spin weight factor (2) is included in our notation in this section. 

 

______________________________________________________________________ 

1. Boltzmann transport equation 

We assume that the wave functions of the system can be described by on-electron Bloch 

function (we will discuss later the wave function of Bloch electron) 
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The number of electrons per unit volume whose wavevectors lie in the interval (k - k+dk) is 

 

krk df ),(
)2(

2
3

, (1) 

 

where the factor 2 is the spin weight. In equilibrium ),( rkf  becomes the Fermi-Dirac 

distribution function f0(E), but deviates from f0(E) in the presence of the electric field, 

magnetic field, temperature gradient, and so on. We consider the time dependence of the 

distribution function in the presence of such perturbations. There are two contributions to 

this time dependence, (i) from the external force (the drift term) and (ii) the collisions (the 

collision term), 
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Fig. Phase space trajectory function ( , , )f tk r . 

 

In the time interval between t and t + t, the drift term of ),( rkf  corresponds to the 

difference of the incoming quantity tf  ),,( rrkk in the phase space and the outgoing 

quantity tf ),,( rk . Then we have 
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where v is the velocity and F is the force due to the presence of the perturbations. 

 

 
 

Fig. Probability transition between the states k  and 'k . ( ', ) ( ')[1 ( )]P f fk k k k . 

( , ') ( )[1 ( ')]P f fk k k k  

 

In consideration of the exclusion principle, the collision term can be expressed  
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where we assume that P does not change due to the external fields. In thermal equilibrium, 

we have the condition of detailed balance, 
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As shown below, this can be well described by 
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using a relaxation time (k). 

We consider the general Boltzmann equation 

 

drift collt

df f f

dt t t
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In the steady state, 
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0
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This equation is called the Boltzmann equation.  
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2. Effect of electric field 

Here we consider the case when the electric field (sufficiently weak constant field) is 

applied to the system; 
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where vk is the group velocity, E is the electric field, and F is the force due to the electric 

field. We assume that ),( rkf  can be described by 

 

)()()(),( 10 kkkrk ffff  .  

 

which is independent of r. We also assume that  
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and the energy is conserved (the elastic scattering), 
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We also get 
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In the steady state, where 
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only the electrons near the Fermi energy contribute to the distribution function )(1 kf . 

 

3. Relaxation time )(k  

We consider the case when the direction of the electric field is the positive x axis. Then 

we get 
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We note that 
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where we assume that  

 

)()'( kk   . 

 

The group velocity vk is given by 
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m
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where m* is the effective mass of electrons. Then the relaxation time can be expressed by 
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4. Expression for the current density and conductivity 

From the definition, the current density Jx is given by 
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We need to put 1/V in the expression of the current density. The unit of [e v] 

=[Coulomb][ cm/s] = [A s] ][ cm/s]=[A][cm], while the unit of current density is [A/cm2]. 

Noting that 
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5. Born approximation (Quantum mechanics) 

We consider the scattering of free electron (plane wave) by a potential V(r). 

 

 
 

Fig. Scattering of free electron in the presence of potential V(r). ki = k. kf = k'. 

 

According to the Quantum Mechanics, the wavefunction of the scattered electron can be 

expressed by 
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The first term: original plane wave in propagation direction k. The second term: outgoing 

spherical wave with amplitude ),'( kkf . 
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The differential cross section is defined as 
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The first order Born amplitude is 
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which is the Fourier transform of the potential with respect to q, where 

 

'kkq  : (scattering wave vector). 

 

For the elastic scattering, k and k' lie on the Ewald sphere (|k| = |k'| = 2/). 
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Fig. Ewald sphere. The scattering vector q = k' - k. The normal process. In this 

process, 
2

sin2


kq  . The elastic scattering is assumed. 

 

5. Expression of 1/(k) 

We assume that the transition probability is given by 
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for the elastic scattering where the incoming electron with |k> is scattered in to an outgoing 

electron with the state |k'>, as a result of the scattering potential (Born approximation). The 

matrix element is defined by 
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Now we calculate the reciprocal relaxation time 
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Here we note that 
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where  is the angle between k (the kx direction) and k', and )'(D  is the density of states. 

Then we get 
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The factor (1-cos'') indicates that the forward scattering does not contribute to the electrical 

resistivity. It is found that 
)(

1

k
 is proportional to the density of states )( FD  . 

 

6. Average velocity along the direction of the electric field 

The average velocity of the electron along the direction of the electric field is given by 
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using the relation 
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We note that the current along the x direction is given by 
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Suppose that the relaxation time ( ) k  is independent of k. Then we get 
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This leads to the classical expression  
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where  )(k  is assumed. 

 

7. Scattering by phonon 

In previous section, we have discussed the scattering of neutron by phonon. From the 

analogy we may write similar expression of the scattering of electron by phonon.  
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The first term corresponds to the absorption of phonon and the second term corresponds 

to the emission of phonon. For simplicity, bj is independent of j. Then we get the scattering 

amplitude as 
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where U0 is constant, Q = k' - k (scattering vector), eq is the polarization vector, G is the 

reciprocal lattice vector. Note that  
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where <nq> is the phonon distribution function. The reciprocal relaxation time for the normal 

process (G = 0), 
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where we use the approximation 
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Then we have 
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8. Temperature dependence of resistivity 

We discuss the temperature dependence of the electrical resistivity of metal using the 

expression 
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(a) High temperature limit (T>>). 
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The electrical resistivity at low temperatures is proportional to T at high temperatures (T>>), 
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(b) The low temperature limits (T<<). 
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We use the relation for the calculation. 

 

x
T

qkq DF 


2
sin2


,
 

 











2
sin

2 

Tq

k

Tk

cq

Tk
x

D

F

BB

q ℏℏ

 

 




d
Tq

k
dx

D

F 









2
cos   

 

dxx
T

k

q

dd

F

D 3

44

3

2

1

2
cos

2
sin4)cos1(sin



































 




 

 

Then  

 
5 5 /2 4

0

0

1 ( )

24 1

T

F F D

x

F

D k U q T x
dx

cNM k e




          


ℏ

ℏ  



18 

 

 

where 

 

0
D

B

cq
x

k T T


 
ℏ

 

 

becomes infinity at low temperatures. Noting that 

 






)5(24
1

0

4

dx
e

x
x

24.8863, 

 

we have 

 

)5()()5(24
24

)(1
552

0

552

0 








































T

k

q
D

NMc

Uk

k

qT

cNM

UkD

F

D
F

F

F

DFF

ℏ

ℏ

ℏ
 

 

The electrical resistivity at low temperatures is proportional to T5 at high temperatures 

(T<<), 
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9. Bloch T5 law; Grűneisen law 

We do not take into account the effect of the Umklapp process on the electrical resistivity. 

The Umklapp scattering of electron by phonons is a scattering process in which a reciprocal 

lattice vector G is involved, 
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This process significantly contributes to the electrical conductivity or electrical resistivity. In 

this process the scattering is inelastic. The scattering amplitude can be described as 
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where 

 

kkq   'ℏ  

 

 
 

 
 

Fig. The center of the Fermi sphere is at the reciprocal lattice vector G. The green 

zone is the Brillouin zone (Bz). k and k' are located on the Fermi surface. The 

wavevector k+q is at the Point A; on the Fermi sphere in the adjacent Bz. The 

point A is equivalent to the point A' inside the original zone. k' and k are 

almost antiparallel in this figure. 

 

When the umklapp process is included in the model, the electrical resistivity can be expressed 

by a scaling function of T/, 
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(Grűneisen, Bloch T5 law) 

 

At high temperatures (T>>),  
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At low temperatures (T<<), 
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Fig. The normalized resistivity (T)/() vs T/. Bloch T5 law. 

 

 

APPENDIX 

 

Current density: 
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Note that 
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The group velocity is given by 
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k  is normal to the surface with constant energy (Fermi surface). 
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where -e is the charge of electron, and e>0. 
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Noting that 
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the current density can be expressed by 
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The density of states is 
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The conductivity is obtained as 
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We now consider the conductivity for the free electron fermi gas model, 
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The energy dispersion of free electron is given by 
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The conductivity is 
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Noting that 
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we have the conductivity 
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Using the number density given by 
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APPENDIX 

 

General result for ( )D   

 

 
 

 

Fig. The volume element in the k space. dkn = dk. 3
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The group velocity is defined by 
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which is normal to the surface of e = constant. We note that from the definition, we have 
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When 0d   ( = constant surface),  k is perpendicular to any vector on the surface (

= constant). In other words, the group velocity 
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we have the k-space volume element as 
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