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We discuss the Boltzmann transport equation which is very useful in understanding the
transport properties such as electrical conductivity, thermal conductivity, and thermoelectric
power. This equation is used to determine the distribution function of particles (electrons) in
the phase space (r,k) phase space. Because of the Heisenberg’s uncertainty principle, the

use of this equation is limited for the transport equation in the quantum mechanics. The
number of particles in the range [r and r+dr, p and p+dp],

dN = f(p,r,t)drdp .

In thermal equilibrium f(p,r,t) is the Fermi-Dirac distribution function. The system is

deviated from the thermal equilibrium in the presence of a perturbation such as the electric
field and temperature gradient.

((Note))
Here we use the following notation

(2)

instead of using

dk
WCE

In other words, the spin weight factor (2) is included in our notation in this section.

1. Boltzmann transport equation
We assume that the wave functions of the system can be described by on-electron Bloch
function (we will discuss later the wave function of Bloch electron)



wi(r)= |k> = e[k‘ruk(r)-
The number of electrons per unit volume whose wavevectors lie in the interval (k - k+dk) is

%f(km)dk, (1)
where the factor 2 is the spin weight. In equilibrium f(k,r) becomes the Fermi-Dirac
distribution function fo(E), but deviates from fo(E) in the presence of the electric field,
magnetic field, temperature gradient, and so on. We consider the time dependence of the
distribution function in the presence of such perturbations. There are two contributions to
this time dependence, (i) from the external force (the drift term) and (ii) the collisions (the
collision term),
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Fig.  Phase space trajectory function f(k,r,?).

In the time interval between ¢ and ¢ + At, the drift term of f(k,r) corresponds to the
difference of the incoming quantity f(k — Ak,r — Ar,)At in the phase space and the outgoing
quantity f(k,r,)At . Then we have
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where v is the velocity and F is the force due to the presence of the perturbations.
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Fig. Probability transition between the states |k> and |k'> . P(k“Ek)f(EN[1- f(k)].
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In consideration of the exclusion principle, the collision term can be expressed

(@j = S LP(K )£ () 1= £ (k)} = POk, k)£ (R) (L= (K3

ot , (3)
~ Z[P(k',k)f(k') — P(k,k'") f (k)]

where we assume that P does not change due to the external fields. In thermal equilibrium,
we have the condition of detailed balance,

P(k' k) fo (k') = P(k, k') f, (k)

Then we get
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As shown below, this can be well described by
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using a relaxation time 7(k).
We consider the general Boltzmann equation
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In the steady state,

@,
dt

or

5.4
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This equation is called the Boltzmann equation.

fzfo—rv-V,f—%rF-ka

where
F =—¢[E +l (vx B)] (Lorentz force)
c
(3.5
at coll 2
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2 Effect of electric field
Here we consider the case when the electric field (sufficiently weak constant field) is
applied to the system;

v, :%ng(k). F = —eE

where v is the group velocity, E is the electric field, and F is the force due to the electric
field. We assume that f(k,r) can be described by

Sfk,r) = f(k) = fo(k)+ (k).
which is independent of r. We also assume that
o) >>|fik)|
and the energy is conserved (the elastic scattering),
k'~k, E(k) =~ E(k"), So(k") = f, (k)

Then we get

[@j __ S~ f k) __fi(k)

ot (k) (k)
where
Sik) \ _ Jo(k) \ \
k) —;P(k,k)[fo(kﬂfl(k) ) {fo(kY)+ fi(k)}]
= ZP(k,k')[l —%]



We also get

(gj :£E~ka(k)zEE~kag(k):eE.ka_
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In the steady state, where

ﬂ:[gj +[gj =0
dl' at drift at coll ’

Then we have

fik) =eE - vkr(k)%

k

Since

dfy(&,) ~—5(¢
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only the electrons near the Fermi energy contribute to the distribution function f,(k).

3. Relaxation time 7 (k)

We consider the case when the direction of the electric field is the positive x axis. Then
we get

fi= eExvxr(k)—d];‘; (&)

&y

We note that
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where we assume that
(k") =1(k).
The group velocity v is given by

hZ
v, =V, & =—k,
m

where m" is the effective mass of electrons. Then the relaxation time can be expressed by

LS Pty -5 = 2 T paia -5
(k) T k' Q) k,
4. Expression for the current density and conductivity

From the definition, the current density Jx is given by

dfo (&)

k

=—Z( ey, fi(k)=—¢’E, ZV r(k)——=
where

Silk)= eExvxr(k)%

&y

We need to put 1/V in the expression of the current density. The unit of [e V]
=[Coulomb][ cm/s] = [A s] ][ cm/s]=[A][cm], while the unit of current density is [A/cm?].
Noting that

dfy(e0) _ fo= 1)
de, kT

b

we have

J, kT Zv (k) f,(1- f,).-



5. Born approximation (Quantum mechanics)
We consider the scattering of free electron (plane wave) by a potential V(r).

kf

Fig. Scattering of free electron in the presence of potential V(r). ki = k. k=K'

According to the Quantum Mechanics, the wavefunction of the scattered electron can be
expressed by

(rlw )

ik‘rfr"

<r|k> - i—?jdr'm V(r')<r"1//(+)>

where



Here we consider the case of <l“l//(+)> .
|r—r'| =r—-r'e,

k'=rke,

ik‘rfr'

x ") = e for large 7.

1

r=rf

Then we have
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ikr
<r‘y,<+>>=(27:)3/2 e +_er FKK)]

The first term: original plane wave in propagation direction k. The second term: outgoing
spherical wave with amplitude f (k' k).

1R == 2y i v )
:_Lz_m(z) '|I}‘l//(+)>

The differential cross section is defined as

=|f k)|
with

Fe k) == 2 2y Ky )

The first order Born amplitude is

fK, k)_—iz—m(z ) (k'[P k)=~

] i(kfk')-rV(ry)
which is the Fourier transform of the potential with respect to ¢, where
q=k—-k': (scattering wave vector).

For the elastic scattering, k and &' lie on the Ewald sphere (k| = |k'| = 21t/ A).
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Ewald sphere

Fig. Ewald sphere. The scattering vector ¢ = k' - k. The normal process. In this

.0 . L
process, g =2k s1nE . The elastic scattering is assumed.
5. Expression of 1/7(k)
We assume that the transition probability is given by

P(k,k") = 27”|V(k,k')|25(gk, —&)

for the elastic scattering where the incoming electron with |k> is scattered in to an outgoing
electron with the state |k™, as a result of the scattering potential (Born approximation). The
matrix element is defined by

Vikk')=(k'V|k).

Now we calculate the reciprocal relaxation time
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Here we note that
dk'= k" dk'sin 6,d0.dg¢,.

D(g')de' 2V

— - ka dkv
4 (27)

where 6 is the angle between k (the &y direction) and k', and D(g'") is the density of states.

Then we get
1 2V 2z ) )
k? dk'sin 0,,d0,.dé [V (0.) (e, —e )1—cosb,.
k) (2x) h == [k dk'sin 0.d0,dg |V (6] (e — &) (1 - cos 6,.)
_(22V) 2; 2ﬁj5(€k —&)k" dk'd, sin 6, |V(9 )| (1-cos8,)

__E [ 56, — £)D(e")de (6, sin G|V (8,)] (1~ cos 6,.)

D(e .
= %Idﬁk' sin 0k,|V(0k,)|2(1 —cosb,.)

The factor (1-cos#") indicates that the forward scattering does not contribute to the electrical

resistivity. It is found that 3 is proportional to the density of states D(¢,.).
T

6. Average velocity along the direction of the electric field
The average velocity of the electron along the direction of the electric field is given by

()= S i) == 3 Fethor- Ll

k k

using the relation
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Si(k) = eExvxr(k)% '

&
We note that the current along the x direction is given by

e’E > o dfy(e)
J =__XE )/ A A Sy
* |4 k Vs T( ) dgk

Suppose that the relaxation time 7(k) is independent of k. Then we get

b

JX - _ ezExT ZVXZ df;) (gk)
Vo Z de,

and

_eEr~ 2 dfy(&)
()= A,

This leads to the classical expression

e’E 1
Jo__ v __ N, __
<vx>_ eEtr e="ne
N

or
<JX> = n(—e)<vx> ,
where 7(K) =7 is assumed.

7. Scattering by phonon
In previous section, we have discussed the scattering of neutron by phonon. From the
analogy we may write similar expression of the scattering of electron by phonon.
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The first term corresponds to the absorption of phonon and the second term corresponds
to the emission of phonon. For simplicity, b; is independent of j. Then we get the scattering
amplitude as

Sinetasiic (@5 @) = U, {uq Q- e, o (@, — a, )0(Q—q—G)
+u, (Q-e,)5(w, +®,)5(Q +q—G)}

where Up is constant, Q = k' - k (scattering vector), eq is the polarization vector, G is the
reciprocal lattice vector. Note that

(n)+5) iy

NMaw NMaw

q q

b

2_
lu, ['=

where <ngq> is the phonon distribution function. The reciprocal relaxation time for the normal
process (G =0),

1 D(e ‘
P gm0, 1-cos0

for

PO > Uluflgeef =07 MLy o <y Mok L
e q

where we use the approximation
2 1 )
‘q 'eq‘ >34
Suppose that phonons are acoustic phonons, we get

2 2 hq<nq>
|V(Hk,)| —)Uo W
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Then we have

1 1 _D() WU

TR 3CNMj dq(n, )sin0(1 - cos0) ,

where
. 0
q =2k, sin >
and the upper limit of € is determined from the upper limit of g;
. 0
q, =2k, sm7° :

8. Temperature dependence of resistivity
We discuss the temperature dependence of the electrical resistivity of metal using the
expression

(a) High temperature limit (7>> ).

We use the approximation

q<n >= q _ qk,T _ k,T _ k,T k,© _Theqy, _q,T
T 1 he,  he ky® he O he O
Then
1_D() U/ % F 4950 001 —cos o) Us'auDier) T
T 4 3cNM © 4 6cNM O
with
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Id@sin@(l—cos@) =2
0

The electrical resistivity at low temperatures is proportional to 7 at high temperatures (7>>6),

__m UOZqDD(‘C"F)z

ne* 6¢cNM o

(b) The low temperature limits (7<<6).

2
1_ D) nU, [d6—L—sino(-coso)
T 4 3eNM P |

We use the relation for the calculation.

.0 T
q:2sz1nE=q06x,

h
Lty heq _ 2k, Qsin[gj
kyT  k,T q, T

sin @(1—cos @)d b = 4sin’ [gj cos[gjdé’

4 4
_1[4n [Zj x’dx
2\ k. )\ ©

Then

1 _D(&,) kU’ (q_j (zj T

T 24h cNM \k,)\®) + e -1
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where

xO_hqu _?

= X =
becomes infinity at low temperatures. Noting that
w 4

X
e

0

dx =245(5) =24.8863,

we have

5 s 5 2 > 5
1 _D(ep) kU, [Zj 9o | 240(5) = kFiD(eF) LE] [Zj c(®)
r 24n oNM \0) |k, chNM S

The electrical resistivity at low temperatures is proportional to 7° at high temperatures
(I<<0),

5 5
m k.U, qn [Tj
=————D(g,) = || =| s®).
P ne* chNM ( F)(kF ) <G)

9. Bloch 7° law; Griineisen law

We do not take into account the effect of the Umklapp process on the electrical resistivity.
The Umklapp scattering of electron by phonons is a scattering process in which a reciprocal
lattice vector G is involved,

k-k=q+G

This process significantly contributes to the electrical conductivity or electrical resistivity. In
this process the scattering is inelastic. The scattering amplitude can be described as

Sinetasiic (@5 @y) =U, {uq Q- e, Yo (@, — a, )0(Q—q-G)
+u, (0 €,)5(m,+@,)5(Q +q-G)}
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where

ho, =0, —o,

Fig. The center of the Fermi sphere is at the reciprocal lattice vector G. The green
zone is the Brillouin zone (Bz). k and k' are located on the Fermi surface. The
wavevector k+q is at the Point A; on the Fermi sphere in the adjacent Bz. The
point A is equivalent to the point A' inside the original zone. k' and k are
almost antiparallel in this figure.

When the umklapp process is included in the model, the electrical resistivity can be expressed
by a scaling function of 7/,
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T SG/T 2dz
:4 _
p=4py(3) ;[(ez—l)(l—ez)

(Griineisen, Bloch T° law)

At high temperatures (7>>06),

@jj 2Sdz ~ o/T 25dz _l[®j4
(e =D(1-e7) 1 z* 4 '

Then we get
T
P =P, (6)

At low temperatures (7<<6),

(—) j 24407 1250,y
P =4p, “Di-e7) 1290 o
where
[—= dz —5!g(5)=124.431
o (e =D(1-e"
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Fig.  The normalized resistivity o(T)/( ®) vs T/ ®. Bloch T° law.

APPENDIX

Current density:

J= % S (e, f, (k)

1w
vV 2r)’

2
=) A}

[ dk(=eyv, £, (k)

[ div, f,(k)

Note that

dk = dk dS

The group velocity is given by
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d
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:|ng|=hvk, dkLza

V¢ is normal to the surface with constant energy (Fermi surface).

%y

k

fi=e(E- Vk)f(k)

where -e is the charge of electron, and e>0.

Yo
os,
0
)L
0
3hjdsj—r(k>vk(E v f°
since
dk = dSdk, = ds -5
hv,
Noting that
o _s(o-s,)

o€

the current density can be expressed by

e’r jvk(E-vk)dS

J=—
4r°h v,

The density of states is
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14 ds
D(g)de = de|—
() 7’ '[ hv,
or
V ¢dS
D(e)=—|—
4z° Y hv,

The conductivity is obtained as

Jx = o-xxEx
2
er

_ 2 9y
o-xx - .[dkvx (_a_é‘k)

4’
We now consider the conductivity for the free electron fermi gas model,

v, :Ekx :ﬁksinﬁcosqﬁ
m m

I, : o, of.
| dkvxz(—ﬁ) = ([ [ ki’ sin 6164 i sin’ O cos’ ¢(_a_gi)
n’ ) of,
= mz'.[_'-J.dkk4 sin’ 6d 0 cos’ ¢d¢(——ag‘; )

hz 0 8f T 2r
- j dkk* (-2 j sin’ 646 j cos’ ¢d
m- 0€, % 0

Note that
Vg 4 2
Isin39d9:—, jcosz¢d¢:7z
0 3 0

Then we get
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of,. 4nh T, . Of
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The energy dispersion of free electron is given by

2 1/2
e w3

Idkv 82)_@.[(121} des¥? (- fo)

The conductivity is

2 5/2x
_ e T 27Zh [ j jd 3/2 aﬂ)

" 4 3m?
e’t 27 2m 2m 32 12 8f0
47z 3m® W\ jd )
_ eZT [ j3/2]2d 3/2 A)
37’m o,

Noting that
.[dé‘é‘yz(—%):i.[dé‘é‘”zﬂ)
0 og, 2%

we have the conductivity

ezz_ 3/20
— 1/2
Gxx - 2 [ j jd f;)

27°m
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Using the number density given by

N 1 2m 3/2OO 1/2
—= — deg
v o2r ( n’ ;[ Sy

S
Q
N

APPENDIX

General result for D(¢)

n
A
¢ +de dkn
dS{
e =|copsStant

Fig. The volume element in the k space. dkn = dk.. d’k = dS,dk, = dS,dk,

The group velocity is defined by

1
v, :%ng,
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which is normal to the surface of e = constant. We note that from the definition, we have
de=V,e-dk =hv, -dk .

When de =0 (&= constant surface), V, ¢ -is perpendicular to any vector on the surface (&

: 1 : :
= constant). In other words, the group velocity v, = %V +€ 1s normal to the surface with ¢ =

constant.
1 o¢
eIl =53
or
de =|vk|dkL,

we have the k-space volume element as

ds.dk, =ds, %%~ g5 9¢.
nlv,| v,
Then we get
2
D(e)de = V3 dSEdg’
2x) hv,
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