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1. Introduction 

The electrons in a metal move along the cyclotron orbits. The induced magnetic fields must 

therefore average out over the regions with dimensions of the order rH 

 

eH

kc
r F

H

ℏ
  ≈ 10-3 cm 

 

in a field of 10 kOe. The mean distance between electrons is about 1 Å. Thus it is clear that the 

field acting on the conduction electron is the average field inside the metal. The average of the 

microscopic field is simply the magnetic induction B. In the situation where the susceptibilti 

becomes large, the field H is not equal to B, and it will be related to B through the magnetization 

M(B) as 
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Fig. Relation between external magnetic field H and magnetic induction B arising as a 

result of dHvA effect. The portion a-b of the curve is unstable; 0)/(  TBH . 

 

When BBM )( , BH  . However, if BBM )( , the situation becomes different. For 

some values of H, there are three values of B. Such a situation suggests an instability similar to 

that occuring in the P-V phase diagram representing the van der Waals equation of state.  
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Fig. P-V phase diagram for the van der Waals gas with constant temperature 

(isotherm) exhibiting an unstable portion where 0/  VP . 

 

In the case of the van der Waals equation of state, the portion of the P-V isothem where 

0)/(  TVP  is unstable thermodynamically. The condition for the appearance of 

discontinuous jump in B is the appearance of the interval with 0)/(  TBH  and the H-B curve 

or, equivalently 

 




4

1)(






B

BM
. 

 

The shaded area showm in the figure below  should be equal. Equivalently, 
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2.  Experimental results (Shoenberg effect) 

The Shoenberg effect has been studied in the noble metals and particularly in Be where it is 

very strongly marked. 

 

(1) Be needle-like sample 
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(2) Ag 

A very interesting experimental result on the Shoenberg effect has been reported by Kramer 

et al. for Ag sample under strong Landau quantization in magnetic fields up to 10 T.  They use a 

set of micro Hall probes for the detection of the local induction. Their results are reported in 

Phys. Rev. Lett. 95, 267209 (2005).  

 

 

 
(Kramer et al. PRL. 95, 267209 (2005).) 
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(Kramer et al. PRL 95, 267209 (2005)) 

 

_____________________________________________________________________________ 

3. Model for the Shoenberg effect (by Pippard) 

Here we discuss the Shoenberg effect, which was discovered by Shoenberg in the course of 

experiments on the de Haas-van Alphen effect in the noble metals (1962). He observed a line 

shape from of de Haas-van Alphen oscillation from sinusoidal oscillation, which is dependent on 

the demagnatization factor. According to Pippard. there is one interaction which leads to 

observable effects, and which fortunately is a macroscopic in character and capable of analysis 

without probing too deeply into fundamentals. This is the magnetic interaction which becomes 

important when the de Haas-van Alphen effect is strong enough to make the internal field in the 

sample significantly different from the applied field H (Shoenberg effect). The internal field 

responsible for determining the energy levels inside the sample is the macroscopic B, and in the 

highly oscillatory de Haas-van Alphen effect it does not take much to make B differ from H by a 

substantial fraction of a cycle of the oscillation.  



7 

 

The oscillatory magnetization due to the dHvA can be described by 
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where  is a phase factor and F is the dHvA frequency, and H is the external magnetic field. 

Suppose that H is changed around H = H0; 

 

hHH  0 ,  bHB  0  

 

where | h  is very small compared to H0.Then we have 
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The magnetic induction (effective magnetic field)  B is expressed by 

 

bHMhHMHB  00 44   

 

where 

 

Mhb 4  

 

We now simply write the magnetization M as 

 

)sin(0 bMM   

 

where h is replaced by b. 
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Pippard has considered the problem of magnetic interaction and has proved that Shoenberg's 

conjecture is true, i.e., the dHvA oscillations are simple oscillating function of the magnetic 

induction B. Over limited ranges of field, the magnetization can be approximated by 

 

)sin(0 bMM   

 

where the magnetic induction B is related to an external magnetic field H as 

 
MDhb )1(4    

 

where D is the demagnetization factor. From the above equations, we have 
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where 

 

My 4 , hx  , 04 Ma  , 
 

Note that b is expressed by 
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The criterion for the magnetic interaction to be significant is simply  

 

a>2. 

 

In order to solve the nonlinear equations, we introduce 

 

yDx )1(  . 

 

Then we get 

 
sinay 

 
 

 sin)1( Dax  . 
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In other words, x and y are expressed in terms of , a and D. The Gibbs free energy is obtained 

as 

 

  ydxMdhG
24
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or 
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This can be rewritten as 

 

0

2

2

2

)2cos()1(
4

cos

]2sin)1(
2

sin[

]cossin)1(sin[

]cos)1(1[sin

gD
a

a

dD
a

a

dDaa

dDaaydxg






















 

 

in terms of , where g0 is a constant. The local maximum and local minimum of the value of x 

for the curve of x vs , are obtained as 
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This problem is very similar to the phase transition of van der Waals system such as (liquid-gas 

transition). 

 

4. Numerical calculation 

Here we solve the problem by using the Mathematica in the following ways. We show 

typical results of y vs x, g vs x, and b vs h) where the magnetization factor D and )4( 0Ma   
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are appropriately chosen as parameters. We notice that the dHvA oscillation (y vs x) becomes 

distorted when a approaches unity from small a (<1). For a>1, y is a multi-valued function of x. 

 

(i) y vs x (magnetization vs external magnetic field) and g vs x (free energy vs an external 

magnetic field)  

ParametricPlot of {  sin)1( Dax  , sinay  } 

ParametricPlot of {x, g} 

(ii) b vs h (magnetic induction vs external magnetic field) relation 

ParametricPlot of {x, }, where  b , xh   
 

(1) a = 2, D = 0. 

 

 
 

Fig. y vs x (denoted by blue line). g vs x (denoted by red line).  

 

 

 
 

Fig. Relation between b vs h. 
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(2) a = 4. D = 0. 

 

 
 

 
 

______________________________________________________________________________ 

(3) a = 4. D = 0.2. 
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(4) a = 4. D = 0.4. 
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(5) a = 4. D = 0.6 
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__________________________________________________________________________ 

(6) a = 4. D = 0.7 
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___________________________________________________________________________ 

(7) a = 3. D = 0.56 
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____________________________________________________________________________ 

APPENDIX 

Mathematica program 

 

 

Clear@"Global`∗"D; a = 4; D1 = 0.2; x1 = θ − a H1 − D1L Sin@θD;

y1 = a Sin@θD; g1 = a Cos@θD −
a2

4
H1 − D1L Cos@2 θD; θ1 = ArcCosB

1

H1 − D1L a
F;

x11 = x1 ê. θ → θ1 êê N; y11 = y1 ê. θ → θ1 êê N;

eq1 = FindRoot@x1 � 0, 8θ, π ê20, π<D; y22 = y1 ê. eq1@@1DD;
eq2 = FindRoot@x1 � −x11, 8θ, π ê20, π<D; y21 = y1 ê. eq2@@1DD ;
f0 =

Graphics@8PointSize@0.02D, Red,

Table@8PointSize@0.01D, Red, Point@8x11 + 2 n π, y11<D,
Point@8−x11 + 2 n π, y21<D, Point@8−x11 + 2 n π, −y11<D,
Point@8x11 + 2 n π, −y21<D, Point@82 n π, −y22<D,
Point@82 n π, y22<D, Line@88x11 + 2 n π, −y21<, 8x11 + 2 n π, y11<<D,
Line@88−x11 + 2 n π, −y11<, 8−x11 + 2 n π, y21<<D,
Line@882 n π, −y22<, 82 n π, y22<<D<, 8n, 0, 1, 1<D <D ;

f1 = ParametricPlot@8x1, y1<, 8θ, − π, 3 π<,
Ticks → 8Range@0, 4 π, πD<, PlotStyle → 8Blue, Thick<D;

f2 = ParametricPlot@8x1, g1<, 8θ, − π, 3 π<,
Ticks → 8Range@− π, 3 π, πD<, PlotStyle → 8Red, Thick<D;

f3 = Graphics@8Text@Style@"g", Black, 15D, 80.5, 0.8<D,
Text@Style@"y", Black, 15D, 80.6 π, 1.2<D,
Text@Style@"x", Black, 12D, 83.5 π, 0<D,
Text@Style@"C", Black, 12D, 8x11, −y21 − 0.2<D,
Text@Style@"C'", Black, 12D, 8x11 − 0.2, y11<D,
Text@Style@"A", Black, 12D, 80.2, −y22 − 0.2<D,
Text@Style@"A'", Black, 12D, 80.2, y22 + 0.2<D,
Text@Style@"B", Black, 12D, 8−x11 + 0.2, −y11 − 0.2<D,
Text@Style@"B'", Black, 12D, 8−x11 + 0.2, y21 + 0.2<D,
Text@Style@"a=" <> ToString@aD, Black, 12D, 8π, 2.0<D,
Text@Style@"D=" <> ToString@D1D, Black, 12D, 8π, 1.5<D<D;

Show@f1, f2, f3, f0, PlotRange → AllD
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f4 = ParametricPlot@8x1, θ<, 8θ, −2 π, 3 π<,
Ticks → 8Range@− 2 π, 3 π, πD, Range@− 2 π, 3 π, πD<,
PlotStyle → 8Red, Thick<, Background → LightGray,

AxesLabel → 8"x = λh", "θ = λb"<D; f5 = Plot@θ, 8θ, −2 π, 3 π<D;
f6 = Graphics@8Text@Style@"a=" <> ToString@aD, Black, 12D, 8π, 8.5<D,

Text@Style@"D=" <> ToString@D1D, Black, 12D, 8π, 7.7<D<D;
Show@f4, f5, f6D
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