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After getting a Ph.D. in physics from the University of Tokyo, and doing a research at 

the Ochanomizu University (Tokyo, Japan), I came to the University of Illinois at 
Urbana-Champaign (UIUC). I did my research, collaborating with Prof. Hartmut Zabal 
(currently, Ruhr-Universität Bochum, Germany) in July 1984 (I stayed at UIUC for the 
period between 1984 and 1985). First I really realized that a brilliant theory of BCS was 
born from such a nice campus. I often saw Prof. Bardeen reading news paper at the 
library of the Physics Department. Prof. William McMillan had worked hard using his 
computers in basement of his home. At that times I was very interested in his ongoing 
model of the spin glass (so-called domain model or droplet model). I also saw Prof. 
David Pines (Bohm-Pines theory) and Prof. Anthony Leggett (Nobel laureate for 
superfluidity of liquid 3He) in Physics Colloquium. In August, 1984, Prof. McMillan 
unfortunately died because of car accident. So I missed the opportunity to learn about his 
exciting model from him. 

Recently I read a book titled "Genius, The life and science of John Bardeen, which 
was written by Hoddeson and Daitch. I was very impressed by this book. It vividly 
explained how the BCS theory was born from the hands of three distinguished scientists 
in the Department of Physics (UIUC). I also noticed what happened to the fate of the 
quantum theory of the charge density wave (CDW) proposed by Prof. Bardeen, around 
1984 and 1985. 

In 1986, the high temperature Tc superconductors were discovered by Dr. Georg 
Bednorz and Dr. Karl Műller (IBM, Zűrich). Many physicists were so excited at the big 
news. They attended the American Physical Society (APS) March Meeting 1987 (Spring) 
(Hilton Hotel, NY City), in order to catch up with the ongoing research on the high Tc 

superconductors such as YBa2Cu3O7-, so on, which cannot be explained by the BCS 
theory. This March Meeting was called a Woodstock of Physics in New York Times. 
Soon after I moved from Champaign (Illinois) to Binghamton (NY) (1986 Fall) as a 
professor of Physics, Prof. Ivar Giaever (Rensslaer Polytechnic Institute, Troy, NY) came 
to our campus (SUNY at Binghamton, NY) and gave an excellent and impressive talk on 
his discovery of electron tunneling in superconductors, evidence of energy gaps in 
superconductors (although his interest changed into the physics of brains). So I had a 
chance to see him in the Colloquium. 
________________________________________________________________________ 
John Bardeen (May 23, 1908 – January 30, 1991) was an American physicist and 
electrical engineer, the only person to have won the Nobel Prize in Physics twice: first in 
1956 with William Shockley and Walter Brattain for the invention of the transistor; and 
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again in 1972 with Leon Neil Cooper and John Robert Schrieffer for a fundamental 
theory of conventional superconductivity known as the BCS theory.  
 

 
 
http://en.wikipedia.org/wiki/John_Bardeen 
 
Leon N Cooper (born February 28, 1930) is an American physicist and Nobel Prize 
laureate, who with John Bardeen and John Robert Schrieffer, developed the BCS theory 
of superconductivity. He is also the namesake of the Cooper pair and co-developer of the 
BCM theory of synaptic plasticity. 
 
http://en.wikipedia.org/wiki/Leon_Neil_Cooper 
 

By late February or early March of 1956, it seemed clear that if somehow the entire 
ground state could be composed of such pairs, one would have a ground state with 
qualitatively different properties from the normal state. And this ground state - the state 
of superconductivity - would be separated from the excited states by an energy gap. 
(from True Genius, the life and science of John Bardeen, by L. Hoddeson and V. Daitch) 
 
________________________________________________________________________ 
John Robert Schrieffer (born May 31, 1931) is an American physicist and, with John 
Bardeen and Leon N Cooper, recipient of the 1972 Nobel Prize for Physics for 
developing the BCS theory, the first successful microscopic theory of superconductivity. 
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http://en.wikipedia.org/wiki/John_Robert_Schrieffer 
 

Schrieffer worked more on the expression that night at his friend's house. In the 
morning, he did a variational calculation to determine the gap equation. "I solved the gap 
equation for the cut off potential. It was just a few hours work." Expanding the 
expression, he found he had written down a product of mathematical operators on the 
vacuum that expressed adding electrons to the vacuum. In his sum of a series of terms, 
each one corresponded to a different total number of pairs. He could hardly believe it. 
The expression "was really ordered in momentum space" and the ground state energy 
"was exponentially lower in energy," as required for the state to be stable. 
(from True Genius, the life and science of John Bardeen, by L. Hoddeson and V. Daitch) 
_______________________________________________________________________ 
Lev Davidovich Landau (Russian language: Ле́в Дави́дович Ланда́у; January 22 [O.S. 

January 9] 1908– April 1, 1968) was a prominent Soviet physicist who made fundamental 
contributions to many areas of theoretical physics. His accomplishments include the co-
discovery of the density matrix method in quantum mechanics, the quantum mechanical 
theory of diamagnetism, the theory of superfluidity, the theory of second-order phase 
transitions, the Ginzburg–Landau theory of superconductivity, the theory of Fermi liquid, 
the explanation of Landau damping in plasma physics, the Landau pole in quantum 
electrodynamics, and the two-component theory of neutrinos. He received the 1962 
Nobel Prize in Physics for his development of a mathematical theory of superfluidity that 
accounts for the properties of liquid helium II at a temperature below 2.17 K. 
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http://en.wikipedia.org/wiki/Lev_Landau 
 
________________________________________________________________________ 

Vitaly Lazarevich Ginzburg ForMemRS (Russian: Вита́лий Ла́заревич Ги́нзбург; 
October 4, 1916 – November 8, 2009) was a Soviet theoretical physicist, astrophysicist, 
Nobel laureate, a member of the Russian Academy of Sciences and one of the fathers of 
Soviet hydrogen bomb. He was the successor to Igor Tamm as head of the Department of 
Theoretical Physics of the Academy's physics institute (FIAN), and an outspoken atheist.  

 

 

http://en.wikipedia.org/wiki/Vitaly_Ginzburg 
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((Note)) Here I present the topics of superconductivity (Josephson effect will be 
discussed in other chapter). I use the c.g.s. units. I use B for the magnetic induction 
(internal magnetic field) and H for the external magnetic field.   
________________________________________________________________________ 
1. Disappearance of resistivity below Tc 

We show that the Meissner effect (B = 0) is the fundamental properties of the 

superconductor. B = 0 cannot be derived from the property of  = 0. 
 

E J  (Ohm's law). 

 

where E is the electric field, J is the current density, and  is the electrical resistivity. 

When 0  (J = constant), E must be zero. Using the Maxwell's equation, we have 

 
1

0
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The zero resistivity implies 
 

0
t


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
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, 

 
which is different from B = 0 (Meissner effect). In other words, if B = 0, we can say that 

0
t





B

. But even if 0
t





B

, we cannot say that B = 0. 

 
((Persistent current)) 
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Fig. Schematic diagram for the persistent current. B is a thermal switch. It is closed so 

that the current circulates in the superconducting contour inside cryostat D, filled 
with liquid He. C is a superconducting ring which generates a magnetic field. The 
persistent current is used for the generation of an extremely stable magnetic field 
for the SQUID magnetometer. 

 
2. Meissner effect: Meissner and Ochsenfeld (1933) 

A bulk superconductor in a weak magnetic field will act as a perfect diamagnet with 
zero magnetic induction in the interior. 
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When a specimen is placed in a magnetic field and is then cooled through the critical 
temperature for superconductivity, the magnetic flux originally present is ejected from 
the specimen. 

The demagnetiztion field contribution is negligible. 
 

04  MHB  , 

 
where M (emu/cm3) is the magnetization and H (Oe) is the external magnetic field. 
 

MH 4 . 

 
((Note-1)) The unit of H is Oe. 1T = 104 Oe. 1 Gauss = 1 Oe. 
((Note-2)) Experimentally we measure the magnetization M in the units of emu. 
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In the expression of 04  MHB  , the unit of M should be emu/cm3, since H and B 
are in the units of G. In this case, the magnetic susceptibility is given by 
 




4

1


H

M
 [emu/(cm3 Oe)].  (complete diamagnetism) 

 
Conventionally, we use emu/cm3, instead of emu/(cm3 Oe). 
 

 

 
 

Fig. (-4M) vs an external field H for the type-I superconductor. M is the 
magnetization 

 

 
 
Fig. B vs an external field H for the type-I superconductor. B is the magnetic 

induction. B = H + 4M. 
 

-4pM

O Hc H

-4pM = H
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4.  The distribution of B = 0 in the superconducting sphere 

We consider a superconducting sphere of radius R placed in a uniform external 
magnetic field H0. If H0 is small, the lines of force are expelled from the specimen. The 
field configuration external to the sphere is determined by the equations, 
 

0  B , 0 B , B → H0 as r →∞ 
 
where r is the distance measured from the center of the sphere. The Meissner effect 
imposes the condition that no line of force can penetrate into the sphere. The normal 
component of B vanishes on the surface of the sphere, 
 

0)( RrnB  

 
The appropriate solution of B in the exterior region is 
 

3

0 0 2

cos
( )

2x

R
H H

r


    B e  

 
(P.G. de Gennes, Superconductivity of metals and alloys. M. Tinkham, Introduction to 
Superconductivity) 
 
where 
 

cos sin
x r   e e e ' 

 
1

( , ) ( , ) ( , )rr r r
r r

     


 
  

 
e e . 

 
and 
 

 cos)
2

(),(
2

3

0
r

R
rHr  . 

 
Note that 
 

02    

 
The field B is expressed by 
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3

0 0 3
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r
        e e e e . 

 
When r = R, we get 
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0

1
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2
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2

r rH H
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Clearly the er component of B normal to the surface is equal to zero. We make a plot of 
the distribution of B using the Mathematica (ContourPlot and StreamPlot).  
 

 
 
Fig. Magnetic field distribution around a superconducting sphere of radius R. For an 

external magnetic field H0 which is relatively low, there is a complete Meissner 
effect. The length of arrows does not correspond to the magnitude of B. 
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((Mathematica)) 

 
 
((Note)) Intermediate state 

On the equatorial circle ( = 
2


 ) on the surface of sphere), the tangential component is 

maximum and is 02

3
H , since the internal field B on the surface is given by 

 

0 0

3 3
sin

2 2
H H    B e e . 

 
For B =2Hc/3, the field at the equatorial circle becomes equal to Hc. Thus For B>2Hc/3, 
certain region of the sphere pass into the normal state. But there must be still 
superconducting regions since B<Hc. In the domain 
 

c
c HB

H


3

2
, 

 
there will be a co-existence of the normal and superconducting regions. This situation is 
called the intermediate state. 
 
For more detail, see also the article (pages 42 - 45, the superconducting sphere) in More 
surprises in theoretical physics (R.E. Peierls, 1991, Princeton). 
 
 

Clear@"Global`∗"D;

V@r_, θ_D := − H0 r −
H0 a3

2 r2
Cos@θD ;

V2D = V@r, θD ê. :r → x2 + y2 , θ → ArcTan@x, yD> êê Simplify;

rule1 = 8a → 1, H0 → 1<; V2D1 = V2D ê. rule1;

Hx = −D@V2D1, xD êê Simplify; Hy = −D@V2D1, yD êê Simplify;

g1 = ContourPlotAEvaluate@Table@V2D1 � α, 8α, −2, 2, 0.05<DD, 8x, −2, 2<, 8y, −2, 2<,
ContourStyle → Table@8Thick, Hue@0.015 iD<, 8i, 0, 60<D,
RegionFunction → FunctionA8x, y<, x2 + y 2 > 1EE;

g2 = StreamPlotAEvaluate@8Hx, Hy<D, 8x, −2, 2<, 8y, −2, 2<, StreamPoints → 100,

StreamStyle → 8Blue, Thick<, RegionFunction → FunctionA8x, y<, x2 + y 2 > 1EE;
g3 = Graphics@8Blue, Thick, Circle@80, 0<, 1D<D;

Show@g1, g2, g3, PlotRange → AllD
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5. Parabolic law for critical field Hc vs T. 

The relation between the critical magnetic field Hc(T) vs T for the transition between 
the normal phase and the superconducting phase can be well described by a parabolic 
law, 
 

)1)(0()( 2

2

c

cc
T

T
KTHTH  , 

 
for T<Tc. In fact this relation is experimentally confirmed from the measurement of Hc(T) 
vs T for the type I superconductors. The data of Hc(T) vs T for Sn is shown here. 
 

 
 
Fig. Phase diagram of a transition from the normal to the superconducting phase. The 

critical field Hc vs T obeying a parabolic law 
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Fig. Critical field Hc of Sn (type-I superconductor) as a function of temperature 

(Advanced Lab. SUNY at Binghamton). Hc(0 K) = 260 Oe and Tc = 3.7 K. The 
data is fitted well to the parabolic law. 

 
6. Experimental results from the Advanced Laboratory 

In the Advanced laboratory (SUNY at Binghamton), we measured the magnetization 
of superconductors Pb and Sn (type-I superconductor) using SQUID magnetometer. 
 
(a) Magnetization (emu/cm3) vs H (Oe) for Pb. T = 2.0 K. Lead (Pb): Type-I 

superconductor. Tc = 7.193 K. Hc = 803 Oe. 
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Fig. M vs H for Pb at T = 2.0 K. This is an original data obtained using SQUID 

magnetometer (M.S.) at the Binghamton University. 
a. T = 50 K, H = 0 Oe, annealing for 200 sec 
b. Cooling the sample from 50 K to 2.0 K in the absence of H 
c. Aging the system at 2.0 K for 100 sec. 
d. Measure the magnetization at T = 2.0 K with increasing H from 0 

to 1000 Oe.  
 
(b) Zero-field cooled magnetization (emu/cm3) vs temperature T (K) for Pb. H is 

changed as a parameter. Lead (Pb): Type-I superconductor. Tc = 7.2 K. HC = 803 
Oe. 
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Fig. The zero-field cooled magnetization MZFC (emu/cm3) vs T (K) for Pb for each H, 

where H = 100 - 720 O2. The measurement was carried out as follows. 
a. T = 50 K, H = 0 Oe, annealing for 200 sec 
b. Cooling the sample from 50 K to 2 K in the absence of H 
c. Aging the system at 2 K for 100 sec. 
d Switch on the magnetic field H at 2 K. 
e. Measure the ZFC magnetization with increasing T. 
H = 1 Oe, 100, 200, 300, 400, 500, 600, 650, 700, 720 Oe 

 
(c). Sn 

Type-I superconductor: Tc = 3.722 K, Hc = 309 Oe 
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Fig. ZFC (zero-field cooled) magnetization M (emu/g) of Sn. Tc = 3.7 K. The critical 

field is Hc = 300 Oe.  
 
7. FC and ZFC susceptibility of superconductor 

Recently, one can measure easily magnetic susceptibility of superconductor by using 
SQUID magnetometer. There are two kinds of measurement of the susceptibility; zero-
field cooled (ZFC) susceptibility and field cooled (FC) susceptibility.  
(i) ZFC susceptibility measurement.  

The system is rapidly cooled from high temperatures well above the critical 
temperature Tc to the lowest temperature T0 below Tc. After an external magnetic 
field is applied to the superconductor at T = T0, the susceptibility is measured in 
the presence of magnetic field with increasing temperature. 

(ii) FC susceptibility 
The FC susceptibility is measured in the presence of an external magnetic field as 
the temperature is decreased from high temperature well above Tc to the lowest 
temperature T0 well below Tc, in the presence of magnetic field. 
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If the system exhibits a Meissner effect below Tc, the T dependence of ZFC 
susceptibility is exactly the same as that of the FC susceptibility below Tc. They 
exhibits a complete diamagnetic behavior, 

 




4

1
 FCZFC . 

 
Figure shows a typical example of the ZFC and FC susceptibility for the 

superconductor Rb3C60. The ZFC susceptibility (diamagnetic) is much smaller than the 
FC susceptibility below Tc (= 28 K). 
 
 

 
 
Fig. Magnetization of a sample of nominal composition Rb3C60. The data labeled ZFC 

were obtained upon warming in a field of 2 Oe, after cooling the sample in zero 
applied field. The FC data were obtained by cooling the sample in 2 Oe, 
illustrating flux expulsion. 
[M.J. Rosseinsky et al, Phys. Rev. Lett. 66, 2830 (1991); “Superconductivity at 28 
K in RbxC60.”]. 
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Fig. H-T phase diagram, where the procedure of the ZFC and FC susceptibility 
measurement for the type-I superconductor. 

 
In the ZFC cooling process, the system undergoes a phase transition from the normal 

phase to the Meissner phase, since no external magnetic field is applied. Even if the 
external magnetic field (H0<Hc for a type-I superconductor) is applied at T=T0 (at the 
lowest temperature), the Meissner phase with B = 0 remains maintained. In this sense, the 
ZFC susceptibility reflects the nature of the Meissner phase.  

How about the FC susceptibility? Suppose that the system has crystalline defects 
inside it. The magnetic field is applied above Tc. Then the system is gradually cooled 
from above Tc. The magnetic flux penetrates into the systems. A part of magnetic flux is 
pinned to the defects. When the system is cooled down below Tc. Main part becomes in 
the Meissner phase with B = 0. However, a part of the magnetic flux is pinned in the 
defects and becomes frozen. In accompanying with this, the supercurrents flow around 
the defect, in order to maintain the frozen magnetic flux. Such defects contribute to the 
positive magnetization, leading to the FC susceptibility which is larger than the ZFC 
susceptibility at the same temperature.  
 
8. Isotope effect  

Lattice vibrations (phonons) are responsible for the isotope effect in 
superconductivity, which was discovered in 1950. The superconducting critical 
temperature of Hg varies with isotopic mass M, from Tc = 4.185 K to 4.146 K, as the 
isotopic mass M varies from 199.5 to 203.4. The critical temperature for superconductors 
depends on the isotopic mass of the crystal, according to 
 

MTc constant,  (Isotope effect) 

 

with  = 0.5. This indicates that lattice vibrations and hence electron-lattice interactions 
are deeply involved in superconductivity. In BCS theory, it is predicted that 

T
TcT0

H0

H

ZFC susceptibility

FC susceptibility
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2/1 MT Dc . 

 
where M is the mass of isotopes. 
 

 
 
Fig. Isotope effect for Sn. The results of several authors are summarized. Maxwell (○); 

Lock, Pippard, and Shoenberg (∎); Serin, Reynolds, and Lohman ().  = 0.47 ± 
0.02 (from ISSP). 

 
8. Type-II superconductor 

The difference between the type-I and type-II superconductors are characterized by 

the Ginzburg-Landau parameter , 
 




  , 

 

where  is the penetration length of magnetic field and  is the coherence length. 
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Fig. Boundary between the N-phase and S-phase for type-I superconductor. 

2

1





 .  is the Ginzburg-Landau parameter. 
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Fig. Boundary between the N-phase and S-phase for type-II superconductor. 

2

1





 . 

 

There are two phases in the phase diagram of H vs T below Tc for the type-II 
superconductor, the Meissner phase (H<Hc1) and the mixed phase (Shubnikov phase, or 
vortex state, mixed phase) for Hc1<H<Hc2. 

 
 
(a) Meissner phase (H<Hc1). (b) Mixed phase  (Hc1<H<Hc2) 
 



22 
 

 
 
Fig. A single vortex which penetrates into the superconductor. The supercurrent flows 

in a counterclockwise direction in this figure. 
 

9. Surface energy 

Consider the interface between a region in the S-state and a region in the N-state. The 
interface has a surface energy that may be positive or negative . 

Type II: The surface energy becomes negative. 
Type I:  The surface energy is positive. 

 
10. Thermodynamics of superconductors 

 
Fn: Free energy of superconducting phase 
Fs: Free energy of normal phase 

 
The Helmholtz free energy is 
 

SdTPdV

TdSSdTPdVTdSSTEddF



 )(
 

 
Replacing 
 

Intensive variable P→M 
Extensive variable V→H 
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(see ISSP of Kittel), 
 
We have the relation 
 

SdTMdHdF   
 
For T = constant, 
 

MdHdF    (thermodynamics identity). 
 
(a) The superconducting phase; 

 

HM
4

1
   (Meissner effect). 

 
Then we have 
 

 84

1
)0()(

2

00

H
dHdFHFHF

HH

Sss   , 

 
or 
 

8
)0()(

2H
HFHF ss  . 

 
(b) The normal phase 

Since M = 0, 
 

)0()(  HFHF nn
. 

 
At the critical field Hc(T), the energies are equal in the normal and superconducting 
states, 
 

)()( cscn HFHF  , 

 
or 
 

8

)]([
)0()0(

2TH
HFHF c

sn  . 

 
Then it follows that 
 

8

)]([
)0()0(

2TH
FFF c

sn  . 
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which is the stabilization free energy of the superconducting state (or the condensation 
energy). 
 

 
 
Fig. The free energy density FN for the normal phase and Fs for the 

superconducting phase. The S-phase is favorable for H<Hc and the N-
phase is favorable for H>Hc. 

 
We define the entropy as 
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The difference between these entropies is 
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The latent heat of the transition is 
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T
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The parabolic law: 
 

)1)(0()( 2
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For T = Tc, 
 

L = 0. 
 
Since the entropy is continuous at T = Tc, the phase transition at T = Tc is the second 

order. 

 
11. Second order phase transition 

The specific heat is defined by 
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V
T

S
TC 











 . 

 
Then we get 
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At T = Tc, 
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Then the specific heat is discontinuous at T = Tc. 
 
12. Thermodynamics for the type-II superconductor (de Gennes) 

(a) Gibbs free energy per unit volume for the superconducting state 

 
Gs can be written as 
 

4
)(

BH
BFG ss  , 

 
Gs has a minimum as a function of B for fixed H, 
 

0











H

s

B

G
. 

 
(b) Gibbs free energy per unit volume for the normal state. 

 

Gn can be written as 
 

 4
)

8
(

4
)(

2
0 BHB

F
BH

BFG nnn  . 

 
((Note)) The first term of the right hand side can be derived from the discussion below. 
 
Gn has a minimum as a function of B for fixed H, 
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0










H

n

B

G
. 

 
Then we have 
 

HB  , 

 
leading to the expression of Gn 
 

8

2
0 H

FG nn  , 

 
in the normal state.  
 
________________________________________________________________________ 
(iii) 
 

Let the field vary from H to H + H 
 

4

B

H

Gs 



,  

4

H

H

Gn 



. 

 
Thus we have 
 

M
HB

GG
H

sn 







4
)( . 

 
We now integrate the relation between H = 0 and H = Hc2. We note that 
 
(i) At H = Hc2 (the upper critical field) 
 

sn GG   

 
(ii) At H = 0,  
 

00
nn FG  , 00

ss FG  , 

 
and by definition 
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H
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Then we get 
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H

HGGGGdHM c

c
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13. The magnetization vs H for the type-II superconductor 

 

 
 
(i) 
 

2
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1
c

H
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c
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(ii) 
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This means that the area (BCD) is equal to the area (DEF) in the magnetization vs H 
curve for the type-II superconductor. 
 
14. B vs H for type-II superconductor 

 

 
 

The magnetic induction B (the mean magnetic field in the interior of a type II 
superconductor is plotted as a function of an external magnetic field H. For H<Hc1, a 
type-II super conductor behaves exactly like a type-I superconductor, exhibiting a perfect 
diamagnetism (Meissner effect). At H = Hc1, normal cores with their associate vortices 
form and pass into the system. The magnetic flux threading the vortices is in the same 
direction as that due to H, so that the magnetic flux is no longer equal to zero. For 

B

H
HcHc1 Hc2

Meissner phase Mixed phase

B = H
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Hc1<H<Hc2, the number of vortices which occupy the system is governed by the fact that 
vortices repel each other. The number of normal cores per unit area for a given strength 
of H is such that there is equilibrium between the reduction in free energy of the system 
due to the presence of each non-diamagnetic core and the existence of the mutual 
repulsion between vortices. As H is increased, the normal cores pack closer, so the 
average flux density in the system increases. At H = Hc2, there is a discontinuity change 
in the slope of the flux density.  

A good type-II superconductor excludes the field completely for H<Hc1.Above Hc1, 
the field is partially excluded, but the specimen remains superconducting. For H>Hc2, the 
magnetic flux penetrates completely and superconducting vanishes. 
 

 
 

Figure shows the plot of -4M vs H for typical  type-II superconductors, where M is the 
magnetization and H is an external magnetic field. We note that the line BC for the 
typical type-I superconductor is described by 
 

HM  14 . 

 
The line BDE for the typical type-II superconductor is described by 
 

BHM  24  

 
where B is the magnetic induction (the mean field inside the superconductor). Note that 
The area (BCD) and area (DEF) are expressed by 
 

Area (BCD) =  
c

c

c

c

c

c

H

H

H
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H
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)]([)]4()4[( 21   
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Area (DEF) =  
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From the condition that area (BCD) is equal to area (DEF), we get 
 

 
2

1

)(
c

c

c

c

H

H

H

H

dHBHBdH  

 
or 
 

 
22

1

c

c

c

c

c

c

H

H

H

H

H

H

HdHBdHBdH  

 
or 
 

 
22

1

c

c

c

c

H

H

H

H

HdHBdH  

 

 
 
Since 
 


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1

c

c

H

H

BdH = A2+A3, 
2c

c

H

H

HdH = A1 + A2, 
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we have 
 

A2 + A3 = A1 + A2, 
 
or 
 

A3 = A1. 
 
15. Specific heat of type-I superconductor Al 

The specific heat as a function of T changes discontinuously at the critical 
temperature Tc. Figure shows the example of Al with Tc = 1.140 K and Hc = 100 Oe. The 
specific heat undergoes a sharp jump at Tc with decreasing temperature. Then it sinks to 
below the value of the normal phase, at very low temperatures. 
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Fig. Specific heat of Al between 0.1 and 2.0 K. [N.E. Philips, Phys. Rev. 114, 676 

(1959)]. Al (Tc = 1.140 K, Hc = 100 Oe). This figure is made using AppleDraw 
based on the data obtained by Philips. 

 
16. Specific heat in the normal state 

The specific heat Cn of a normally conducting metal is composed of lattice part CL 
and an electronic part Cne, 
 

nephn CCC   

 
where Ce is the electronic specific heat 
 

TCne   

 
with 
 

)(
3

2 22

F
B N

k



   

 
Note that 
 

)(2)( FF ND    

 

and D(F) is the number of density (conventional) and N(F) is the number of density per 
spin at the Fermi energy. Cph is the contribution of phonon to the specific heat. 
 

3












T

C ph ,  ( = 427.7 K for Al) 

 
which is negligibly small at low temperatures. Thus the normal specific heat in the 
vicinity of Tc (T>Tc) is well described by 
 

TCn   

 
with 
 

 1.35 mJ/(mol.K) for Al. 
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((Note))  
 

 (mJ/mol K2) = 2.35715 )( FAD   
 
with 
 

0

)(
)(

N

D
D F

FA


   (1/eV atom) 

 
(see the detail for the notation in the Appendix-II) 
 
17. Specific heat in the superconducting state 

The specific heat of Al below Tc is well described by 
 

)
34.1

exp(1.7
T

T

T

C c

c

es 
  

 
for Al. Such an exponential form of 1/T in specific heat near Tc suggests an energy band 
gap for the superconducting material. This band gap is one of the experimental evidence 

which supports the BCS theory of superconductivity. For T0, the BCS theory predicts 
that 
 

)
5.1

exp(17.9
T

T

T

C c

c

s 


, 

 
for the specific heat of conventional superconductors. 
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Fig. Electronic specific heat in the superconducting state, Ces for Al. The different 

symbols distinguish the results of two completely separate experiments [N.E. 
Philips, Phys. Rev. 114, 676 (1959)]. Al (Tc = 1.140 K, Hc = 100 Oe). 

 
18. Prediction from BCS theory on specific heat 

The BCS theory ( which will be discussed later) predicts that 
 

)3(7

8
)(|)(

2
2

0 


 FcBTTns NTkCCC
c

  . 

 
Then the ratio at T = Tc is predicted as 
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For Al, this ratio is about 1.34, which is a little smaller that that predicted from the BCS 

theory. For TkB , it is predicted that 
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The energy gap is given by 
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((Note)) 
Comment by Richard Feynman, how to attack on the problem of superconductivity 
["Richard Feynman and Condensed Matter Physics," D. Pines, Phys. Today 42, p.61 
(1989)] 
 
I decide it would be easiest to explain the specific heat rather than the electrical 

properties. But we do not have to explain any entire specific heat curve; we only have to 

explain any feature of it, like the existence of a transition, or that the specific heat near 

absolute zero is less than proportional to T. I chose the latter because being near 

absolute zero is a much simpler situation than being at any finite temperature. Thus the 

property we should study is this: Why does a superconductor have a specific heat less 

than T? 

 
19. Quasi particle tunneling 

Ivar Giaever (Giæver, born April 5, 1929, in Bergen, Norway) is a physicist who shared 
the Nobel Prize in Physics in 1973 with Leo Esaki and Brian Josephson "for their 
discoveries regarding tunneling phenomena in solids". Giaever's share of the prize was 
specifically for his "experimental discoveries regarding tunneling phenomena in. 
superconductors". Giaever is an institute professor emeritus at the Rensselaer Polytechnic 
Institute, a professor-at-large at the University of Oslo, and the president of Applied 
Biophysics.  
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http://en.wikipedia.org/wiki/Ivar_Giaever 
 

Giaever (1960) discovered that for the superconductor-insulator-metal sandwich, the 
current-voltage characteristic changes from the straight line to the kinked curve. This 
result indicates that the superconductor has a energy gap centered at the Fermi energy. At 

T = 0 K, no current can flow until the applied voltage is V = /e. The energy gap 
corresponds to the break-up of a pair of electrons in the superconducting state. 
 
20. Semiconductor model 

(a) S-I-N junction 
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Fig. Semiconductor model for the S-I-N junction at T = 0 K. V = 0. The Fermi energy 
of the superconductor is at the same level as that of the metal. 

 
 
Fig. Semiconductor model for the S-I-N junction at finite temperature below Tc of the 

superconductor. V = 0. The Fermi energy of the superconductor is at the same 
level as that of the metal. As a result of the breaking up of Cooper pair, a part of 
electrons is excited to the upper level. There are holes in the lower level. 

 

 
 
Fig. Semiconductor model for the S-I-N junction at finite temperature below Tc of the 

superconductor. V =  (correctly, /V e  ). The Fermi energy of the 
superconductor is higher than that of the metal by V. The current flows between 
the superconductor and metal. The excitation of electrons is taken into account 
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because of finite temperatures. However, for simplicity, this effect is not 
described in this figure. 

 
(b) S1-I-S2 junction 

 
 

Fig. Semiconductor model for the S1-I-S2 junction at T = 0 K. V = . The energy gaps 

are 2A for the superconductor S1 and 2B for the superconductor S2. The Fermi 
energy of the superconductor S1 is the same as that of the superconductor S2.  

 
 

 
 

Fig. Semiconductor model for the S1-I-S2 junction at T = 0 K. V = BA..  
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Fig. Semiconductor model for the S1-I-S2 junction at T = 0 K. V = BA. 
 

 
((Note-1)) The energy gap in the BCS theory 
 

1
3.5277

2 B ck T   (BCS theory) 

 
System  Tc(K)   (meV); BCS theory 
___________________________________________ 
Al  1.140  0.1733 
Sn  3.722  0.5657 
Pb  7.193   1.093 

 
((Note-2)) 
(a) Forward biased 
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When the DC is forward biased, the Fermi level of the system 2 raises upward. 
 
(b) Reversed bias 
 

F1

F2

V

eV
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When the DC is reverse biased, the Fermi level of the system 2 goes down. 
 
((Experimental results by I.A. Giaever)) 
 
Discovery of Tunneling Between Superconductors 
conferences.illinois.edu/bcs50/PDF/Giaever.pdf 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&ved=2ahUKEwjaqI
apgeXhAhWjslkKHfa7CiIQFjAKegQIARAC&url=http%3A%2F%2Fconferences.illinois.edu%
2Fbcs50%2FPDF%2FGiaever.pdf&usg=AOvVaw0MrBox0QbdhQhEjwMn4IdD 
 
(a) Tunneling between two superconductors 

 

F1

F2

V

eV
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(a) Tunneling between metal and superconductor 
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21. Result of Giaever and Megerle 

The experimental results were obtained by Giaever and Megerle. Reference: I. Giaever 
and K. Megerle, Phys. Rev. B 122, 1101 (1961). 
 

Al: Tc = 1.140 K, Hc = 100 Oe; 
Pb: Tc = 7.193 K, Hc = 803 Oe 
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Sn: Tc = 3.722 K, Hc = 309 Oe 
 

 
 
Fig. I vs V characteristics of an Al-Al2O3-Sn sandwich at various temperatures. Fig.6 

[I. Giaever and K. Megerle, Phys. Rev. B 122, 1101 (1961)].  
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Fig. The negative-resistance region traced out for different Al-Al2O3-Pb sandwiches 

Fig.17 [I. Giaever and K. Megerle, Phys. Rev. B 122, 1101 (1961)]. 
 
22. Josephson junction which was missed by Giaever 

In a series of his experiments, Giaever missed phenomena known as a DC Josephson 
effect at zero voltage.  
 

 
 
The detail of the DC Josephson junction will be discussed later. 
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Fig. Schematic diagram of quasiparticle I-V characteristic (usually observed in a S-I-S 

Josephson tunneling-type). Josephson current (up to a maximum value Ic) flows at 

V = 0.  is an energy gap of the superconductor. The DC Josephson supercurrent 

flows under V = 0. For V>2/e the quasiparticle tunneling current is seen. 
 
23. Energy gap 

 
 
Fig. The energy gap of Pb, Sn, and In films as a function of reduced temperature, 

which is compared with the BCS theory.Fig.11 [I. Giaever and K. Megerle, Phys. 
Rev. B 122, 1101 (1961)]. 
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24. Vortex state (Mixed state) Hc1<H<Hc2 

 

 
Fig. Repulsive interaction between vortices (fluxoids). 
 
There is a repulsive force between two vortices. due to the Lorentz force. The repulsive 
force is given by 
 

l lA

c c
   F I B J B , 

 
or the force density is given by 
 

1

V c
  
F

f J B  
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Fig. Abrikosov lattice for Hc1<H<Hc2. The votices form a triangular lattice in the 

above case. The arrows show the direction of the supercurrents. 
 
At H = Hc2, the spacing of the Abrikosov lattice is on the order of the coherence length. 
There is one vortex per lattice. 
 

2
0

2 2


cH  

 
At H = Hc2, the fluxoids are packed together as tightly as possible, consistent with the 
preservation of the superconducting state. 
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Fig. The spacing of the Abrikosov lattice is close to the coherence length  just below 
Hc2. 

 

 
 
Fig. Scanning tunnel microscopy (STM) image of a type-II superconductor. Abrikosov 

vortex lattice (H.F. Hess et al. 1989). This figure is copied from PPT of Cooper. 
 
25. The critical field Hc1 and Hc2 for type-II superconductor 

The vortex state describes the circulation of superconducting currents in vortices 
throughout the bulk specimen. The vortex state is stable when the penetration of the 
applied field into the superconducting material causes the surface energy to become 
negative. 
 
Estimation of Hc1: 
 

At H = Hc1, there is one magnetic flux per the penetration depth. 

x

F0
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01
2 cH  

 
Hc1 is the field of nucleation of a single fluxoid 
 
26. Movement of vortex leading to the disappearance of superconductivity 

We consider Why the mixed state is still superconducting in spite of the penetration 
of magnetic flux. 
 

1

V c
  
F

f J B , 

 
Because of the Lorentz force, the magnetic flux lines tend to move transverse to the 
current density J. 

If they do move, with velocity v, they essentially induce an electric field of magnitude 
 

 
Fig. Movement of magnetic flux (fluxoid) when the magnetic field is applied to the 

system in the mixed phase. 
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Fig. The generation of DC voltage through an AC Josephson effect, when the 

magnetic flux (fluxoid) moves at the velocity vf. 
 
The area is given by 
 

xtvA f  )(  

 
The total change in the superconducting phase   is given by 
 

xtvnAn fff  )(22   

 
where nf is the area density of vortices (fluxoids) and vf is the velocity of vortices. The 

magnetic flux penetrating in the area A is 
 

xtvnAn fff  )(00  

 
where 
 

e

c

e

hc ℏ


20  

 
27. Approach from the AC Josephson effect 

We can evaluate the voltage V produced across the distance x along the x direction, 
using the formula of the AC Josephson effect, 
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we get the electric field as 
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Note that the effective field B0 is 
 

00 



 fn

A
B . 

 
Using this expression of B0, we have the final form of E as 
 

f

c



v B

E . 

 
In summary, in the mixed phase of the type-II superconductors, the resistivity is 
generated when the vortices which are pinned by impurities, dislocations, and so on, 
starts to move due to the Lorentz force. This means the destruction of the 
superconductivity.  
 
28. Approach from the special relativity 
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Fig. Application of the special relativity when the magnetic vortex moves at the 

velocity vf. 
Fig. Configuration where the quantum magnetic flux moves at the velocity vf. The 

internal magnetic field (magnetic induction) B is B = nf0. As a result, the electric 
field is set up between the lines AB and  

 
We consider the two frames K and K'. The frame K is the rest frame and the frame K' is 
moving to the right at a velocity vf relative to the frame K. There is no electric field E in 
the K. The magnetic field B is  
 

0
0

))((

))((

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In the frame K', a electric field is newly established as 
 

1 1
' 'f f

c c
   E v B v B  

 

where B' (=  B) and 1

1

1

2

2






c

v
   

 
Since B' is nearly equal to B, we have  
 

1
' f

c
 E v B  

__________________________________________________________________ 
29. Flux pinning preserving the superconductivity 
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Suppose that there is a pinning force which cancels out the Lorentz force. Then the 

velocity is equal to zero. Then we have V = 0, which means that the system is still 
superconducting state where the resistivity is equal to zero.  

Flux pinning is the phenomenon that magnetic flux lines do not move (become 
trapped, or "pinned") in spite of the Lorentz force acting on them inside a current-
carrying Type II superconductor. Flux pinning is only possible when there are defects in 
the crystalline structure of the superconductor (usually resulting from grain boundaries or 
impurities). 
 

 
Fig. Balance of the Lorentz force and pinning force. The system is still in the 

superconducting phase. 
____________________________________________________________________ 
30. Ginzburg-Landau (GL) Theory 

It is surprising that the rich phenomenology of the superconducting state could be 
quantitatively described by the GL theory,11 without knowledge of the underlying 
microscopic mechanism based on the BCS theory. It is based on the idea that the 
superconducting transition is one of the second order phase transition. In fact, the 
universality class of the critical behavior belongs to the three-dimensional XY system 
such as liquid 4He. The general theory of the critical behavior can be applied to the 
superconducting phenomena. The order parameter is described by two components 

(complex number  ie ). The amplitude   is zero in the normal phase above a 

superconducting transition temperature Tc and is finite in the superconducting phase 
below Tc. In the presence of an external magnetic field, the order parameter has a spatial 
variation. When the spatial variation of the order parameter is taken into account, the free 
energy of the system can be expressed in terms of the order parameter   and its spatial 

derivative of  . In general, this is valid in the vicinity of Tc below Tc, where the 

amplitude   is small and the length scale for spatial variation is long. 



58 
 

The order parameter   is considered as a kind of a wave function for a particle of 

charge q* and mass m*. The two approaches, the BCS theory and the GL theory, remained 
completely separate until Gorkov13 showed that, in some limiting cases, the order 

parameter )(r  of the GL theory is proportional to the pair potential )(r . At the same 

time this also shows that q* = 2e (<0) and m* = 2m. Consequently, the Ginzburg-Landau 
theory acquired their definitive status.  

The GL theory is a triumph of physical intuition, in which a wave function )(r  is 

introduced as a complex order parameter. The parameter 
2

)(r  represents the local 

density of superconducting electrons, )(rsn . The macroscopic behavior of 

superconductors (in particular the type II superconductors) can be explained well by this 
GL theory. This theory also provides the qualitative framework for understanding the 
dramatic supercurrent behavior as a consequence of quantum properties on a macroscopic 
scale.  

The superconductors are classed into two types of superconductor: type-I and type-II 

superconductors. The Ginzburg-Landau parameter  is the ratio of to , where  is the 

magnetic-field penetration depth and  is the coherence length of the superconducting 

phase. The limiting value 2/1 separating superconductors with positive surface 

energy )2/1(   (type-I) from those with negative surface energy )2/1(   (type-

II), is properly identified. For the type-II superconductor, the superconducting and normal 

regions coexist. The normal regions appear in the cores (of size ) of vortices binding 

individual magnetic flux quanta *
0 /2 qcℏ on the scale , with the charge eq 2* 

appearing in 0 a consequence of the pairing mechanism. Since >, the vortices repel 
and arrange in a so-called Abrikosov lattice. In his 1957 paper, Abrikosov14 derived the 
periodic vortex structure near the upper critical field Hc2, where the superconductivity is 
totally suppressed, determined the magnetization M(H), calculated the field Hc1 of first 
penetration, analyzed the structure of individual vortex lines, found the structure of the 
vortex lattice at low fields. 
 
31. Ginzburg-Landau theory-phenomenological approach 

We introduce the order parameter ( ) r  with the property that 

 
*( ) ( ) ( )sn  r r r , 

 
which is the local concentration of superconducting electrons. We first set up a form of 
the free energy density Fs(r), 
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2* 2
2 4

*

1 1
( ) ( )

2 2 8s N

q
F F

m i c
    


      

B
r A

ℏ


 

where  is positive and the sign of  is dependent on temperature. 

We must minimize the free energy with respect to the order parameter (r) and the 
vector potential A(r). We set 
 

( )sF dr   r  

 
where the integral is extending over the volume of the system. If we vary 
 

( ) ( ) ( )   r r r  and ( ) ( ) ( ) A r A r A r , 

 
we obtain the variation in the free energy such that 
 

   
 
By setting 0 , we obtain the GL equation 
 

2*
2

*

1
0

2

q

m i c
    

 
     

 
A

ℏ
, 

 
and the current density 
 

2*2*
* *

* *
[ ]

2s

qq

m i m c


       J A

ℏ
 

 
or 
 

* * *
* *

*
[ ( ) ( ) ]

2s

q q q

m i c i c
         J A A
ℏ ℏ

. 

 
At a free surface of the system we must choose the gauge to satisfy the boundary 
condition that no current flows out of the superconductor into the vacuum. 
 

0
s

 n J . 
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32. GL free energy and Thermodynamic critical field Hc 

A = 0 and   (real) has no space dependence. Why   is real? We have a gauge 

transformation; 
 

'  A A  and )()exp()('
*

rr 



ℏc

iq
 . 

 

We choose '   A A A  with 0  (constant). Then we have 
*

0'( ) exp( ) ( )
iq

c


 r r

ℏ
, or 

*
0( ) exp( ) '( )

iq

c


  r r

ℏ
. Even if ' is complex number,   

can be real number. 
 

42

2

1
  Ns FF 

 

When 0




F

, Fs has a local minimum at 

 
2/12/1 )/()/(   . 

 
Then we have 
 




82

22
c

Ns

H
FF   

 
from the definition of the thermodynamic critical field: 
 

)1)(0(
4

2

22/12

c

cc
T

T
HH 















 

Suppose that  is independent of T, then 
 

)1()1)(0(
4

2)1)(0(
4 02

2


cc

c

c

c
T

T

T

T
H

T

T
H 







  

 
where 
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)0(
4

20 cH



  . 

 

The parameter  is positive above Tc and is negative below Tc. Note that >0. For T<Tc, 

the sign of  is negative: 
 

42
0 2

1
)1(    tFF Ns  

 

where 0>0 and t = T/Tc is a reduced temperature. 
 

 

 

Fig. The GL free energy functions expressed by Eq.(5.7), as a function of  . 0 = 3. 

 = 1. t is changed as a parameter. t = T/Tc. (t = 0 – 2) around t = 1.  
 
 

 

 

Fig. The order parameter   as a function of a reduced temperature t = T/Tc. 0 = 3.  

= 1. 
 

33. Coherence length from GL theory 

We assume that A = 0. We choose the gauge in which   is real. 
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0
2 2

2

*

2
3  

dx

d

m

ℏ
. 

 

We put f . 

 

0
2

3
2

2

*

2

 ff
dx

fd

m 
ℏ

. 

 
We introduce the coherence length 
 

2*

2*

*

2

*

2
2 2

22
c

s

Hm

n

mm

ℏℏℏ 


  , 

 
where 
 




82

22
cH

 ,  sn 


 2 , 

 
or 
 

2/1

0
*

2

|1|
2


cT

T

m 


ℏ
 

 
Note that the coherence length diverges as the temperature approaches Tc. Then we have 
 

03
2

2
2  ff

dx

fd
 , 

 
with the boundary condition f = 1, df/dx = 0 at x = ∞ and f = 0 at x = 0. 
 

0)( 3
2

2
2 

dx

df
ff

dx

fd

dx

df
 , 

 
or 
 

)
24

(
2

2422 ff

dx

d

dx

df

dx

d









, 
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or 
 

22
22

)1(
4

1

2
f

dx

df









, 

or 
 

)1(
2

1 2f
dx

df



. 

 
The solution of this equation is given by 
 











2
tanh

x
f . 

 

 

 

Fig. Normalized order parameter f(x) as a function of x/. 
 

34. Physical meaning of coherence length  

The coherence length is a measure of the distance within which the superconducting 
electron concentration cannot change drastically in a spatially-varying magnetic field. 

The coherence length  is a measure of the range over which we should average A to 
obtain the current density J. It is also a measure of the minimum spatial extent of a 
transition layer between the normal metal and superconducting phases. 

We consider two kinds of wavefunctions given by 
 

k  

 

][
2

1
kqk   
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where 

ikxekxxx



2

1
)(   

 
and 
 

)1(
2

1

2

1

][
2

1

)(

iqxikx ee

qkxkx

xx











 

 
where the probability amplitude are 
 

)]cos(1[
2

1
)1)(1(

4

1
)(

2

1
)(

2

2

qxeex

x

iqxiqx 











 

 
The kinetic energy; 
 

m

k
H

2
ˆ

22
ℏ

  

 

kq
m

k
m

kqqk
m

qkk
m

qkqkkkqkk
m

qkkHqkkH

22
)22(

4

])([
4

))()[(
4

)(ˆ)(
2

1ˆ

2
2

2
22

2

22
2

22
2

ℏℏℏ

ℏ

ℏ









 

 
where we neglect q2 for q<<k. 
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The increase of energy required to modulate is 
 

kq
m2

2
ℏ

. 

 

If this increase exceeds g, the superconductivity will be destroyed. The critical value q0 
of the modulation wave vector is given by 
 

gF qk
m

0

2

2

ℏ
 

 

The intrinsic coherence length 0 is defined as 
 

g

F

g

F v

m

k

q 


22

1 2

0
0

ℏℏ
  

 
where vF is the Fermi velocity. 
 
((Note)) BCS theory 
 





 F

g

F vv ℏℏ2
0  

 
In impure materials and in alloys, 
 

0   

Plane wave

Strongly modulated wave

0 p

2
p

3 p

2
2p

5 p

2
3p

7 p

2
4p

qx

0.5

1.0

1.5

2.0

Probability density



66 
 

 
since in impure metals the electron eigenfunctions already have wiggles in them. 
 
35. Lagrangian of particles with mass m* and charge q* in the presence of 

magnetic field 
The Lagrangian L for the motion of a particle in the presence of magnetic field and 

electric field is given by 
 

* 2 *1 1
( )

2
L m q

c
   v v A , 

 

where m* and q* are the mass and charge of the particle. A is a vector potential and  is a 
scalar potential. 
 
The canonical momentum is defined as 
 

*L q
m

c


  


p v A

v
. 

 
The mechanical momentum (the measurable quantity) is given by 
 

*
* q

m
c

  π v p A . 

 
The Hamiltonian H is given by 
 

* *
* * 2 * 2 *

*

1 1
( ) ( )

2 2

q q
H L m L m q q

c m c
            p v v A v v p A . 

  
 

The Hamiltonian formalism uses A and , and not E and B, directly. The result is that the 
description of the particle depends on the gauge chosen. 
 
36. Current density for the superconductors 

We consider the current density for the superconductor.  is the order parameter of 
the superconductor and m* and q* are the mass and charge of the Cooper pairs. The 
current density is invariant under the gauge transformation. 
 

* *

*
ˆRe[ ]s

q q

m c
  J p A , 
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This can be rewritten as 
 

* *
*

*

* * *
* * * *

*

2*2*
* *

* *

Re[ ( )]

[( ) ( )]
2

( )
2

s

q q

m i c

q q q

m i c i c

qq

m i m c

  

       


   

  

      

    

J A

A A

A

ℏ

ℏ ℏ

ℏ

 

 
The density is also gauge independent. 
 

2

s  r . 

 

Now we assume that 
 

( )( ) ( ) ie   r
r r . 

 
We note that 
 

* *
2* * ( )

*
2( ) ( ) ( )

*
2

( ) ( ) [ ( ) ] ( )

( ) [ ( ) ( ) ( ) ] ( )

( ) [ ( ) ] ( ) ( )

i

i i i

q q
e

c i c

q
e i e e

i c

q
i

c



  

    

    

   



    

    

    

r

r r r

p A r r A r

r r r r A r

r r A r r

ℏ

ℏ

ℏ ℏ
ℏ

 
 
The last term is pure imaginary. Then the current density is obtained as 
 

* *
2 2*

*
( )s s

q q
q

m c
     J A v
ℏ

ℏ
, 

 
or 

*
*

s

q
m

c
  A vℏ . 

 
Since 
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*

*
s

q
m

c
  π v p A , 

 
we have 
 

*
*

s

q
m

c
   p A v ℏ . 

 
Note that Js (or vs) is gauge-invariant. Under the gauge transformation, the wave function 
is transformed as 
 

*

'( ) exp( ) ( )
iq

c


 r r

ℏ
. 

 
This implies that 
 

c

q

ℏ




*

'  , 

 

Since '  A A , we have 

 
*

* *

*

' ( ' ')

[ ( ) ( )]

( )

s

q

c

q q

c c

q

c




 



  

    

  

J A

A

A

ℏ
ℏ

ℏ
ℏ ℏ

ℏ
ℏ

. 

 
So the current density is invariant under the gauge transformation. 
 
37. London's equation 

We start with 
 

*
*

s

q
m

c
   p A vℏ , 

 

where p is the canonical momentum. We assume that sn
2  is independent of r. Then 

we get 
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2* *

s s s sq q n J v v . 

 
Using these two equations, we get 
 

* *

* s

s

q m

c q n
   p A Jℏ . 

 

Suppose that  p ℏ =0, which means that the phase  is independent of r. Then we 

have a London’s equation, 
 

*2

*
s

s

q n

m c
 J A . 

 
From this equation, we get 
 

*2 *2

* *
s s

s

q n q n

m c m c
     J A B . 

 
Using the Maxwell’s equation 
 

4
s

c


 B J ,  and  0 B , 

 
we get 
 

*2

* 2

44
( ) s

s

n q

c m c


     B J B , 

 
where 
 

sn  
2 = constant  (independent of r) 

 

2*

2*
2

4 qn

cm

s

L


  ,  (penetration depth). 

 
Then 
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2
2

1
( ) ( )

L


      B B B B , 

or 
 

2
2

1

L


 B B . 

 
Inside the system, B becomes zero, corresponding to the Meissner effect.  
 
((Note)) The London penetration depth 
 

2*

2*
2

4 qn

cm

s

L


   

 
In this equation, we put 
 

ee 2*  , mm 2*  , 
2

n
ns   

 
Then we get 
 

2

2

2

2

4)2(
2

4

)2(

ne

mc

e
n

cm
L 

   

 
This equation can be used to estimate the order of the magnitude in the penetration depth. 
 
38. Penetration depth and the surface current 

We assume that the magnetic field is applied along the z direction.  
 

(0,0, ( ))zB xB  

 

)(
1)(

22

2

xB
dx

xBd
z

L

z


  

 
The solution of this equation is given by 
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)exp()0()(
L

zz

x
xBxB


  

 

 
Fig. The distribution of the internal magnetic field B near the boundary between the 

normal phase and the superconducting phase.  is the penetration depth. The 
direction of B is into the page. 

 

where L is the penetration depth. Then the surface super current Js is given by 
 

( )
( ) exp( )

4 4 4
z

s y y

L L

B xc c c x

x   


     


J B e e . 

 

Since 
x

xBz


 )(

<0 for x>0 (inside the S phase), the surface supercurrent flows along the 

positive y axis only in the region over the penetration depth  from the surface. 
 

 

S-phaseN-phase

x

l

≈

H
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Fig. The distribution of the magnetic induction B(x) (along the z axis) and the current 

density (along the y axis) near the boundary between the normal phase and the 
superconducting phase. The plane with x = 0 is the boundary. 

 

  
 

Fig. Suppose that a magnetic field is applied to the axis direction of the 
superconductor [vacuum or N phase (green) and S phase (pink)]. The supercurrent 
(red) flows around the surface of the S-phase (over the limited region of 
penetration depth from the surface) in the clock-wise direction. The external 
magnetic field is cancelled out by the magnetic field due to the supercurrent, 
leading to the perfect diamagnetism (Meissner effect). 
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Fig.  For T<Tc, the surface current flows near the surface, leading to the cancellation of 

the external magnetic field. Meissner effect. 
 
39. Flux quantization 

We start with the current density 
 

* *
2 2*

*
( )s s

q q
q

m c
     J A v
ℏ

ℏ
. 

 

Suppose that 
2sn =constant. Then we have 

 
* *

* s

s

m q

q n c
  J A

ℏ ℏ
, 

 
or 
 

* *

* * s

s

m q
d d d

q n c
       l J l A l

ℏ ℏ
� � � . 

 

The path of integration can be taken inside the penetration depth where s
J =0. 
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* * * *

( )
q q q q

d d d d
c c c c

             l A l A a B a
ℏ ℏ ℏ ℏ

� � , 

 

where  is the magnetic flux. Then we find that 
 


ℏc

q
n

*

12 2 , 

 

where n is an integer. The phase  of the wave function must be unique, or differ by a 

multiple of 2 at each point, 
 

n
q

c
*

2 ℏ
 . 

 
The flux is quantized. When |q*| = 2|e|, we have a magnetic quantum fluxoid; 
 

e

ch

e

c

22

2
0 

ℏ
 = 2.067833831(12) × 10-7 Gauss cm2 

 
((Note)) cgs units 

Using the fine structure constant   defined by 
 

2 1

137.035999174(35)

e

c
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ℏ

 

 

0  is expressed by 

 

0 e



   

 
which is equal to 430.511e. 
 
40. Parameters related to the superconductivity 

Here the superconducting parameters are listed for convenience. 
 

Thermodynamic field   

 24

cH ,   42 4 cH  
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Order parameter    /*2  sn . 
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Ginzburg-Landau parameter  
*
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2

1
  for type-I superconductor 

2

1
  for type-II superconductor 

 
Note: 
 

eq 2*  (>0) mm 2*  , 2/*
ss nn  . 

 
41. Critical fields Hc1 and Hc2 for the type II supercinductor 
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2

)ln(
4 2

0
1 
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c

H
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Upper critical field (type II)  
2

0
2 2


cH . 
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Surface-sheath field   23 695.1 cc HH  . 

 
Relations between Hc, Hc1, and Hc2 
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
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2202  , 
0

222


 cH

 . 

 

2
2 0
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2

1

2


c

c

H

H
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42. Vortex structure 
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Fig. Plot of the magnetic induction )(
2

)( 02
0


x

KrB


  and the order parameter 

 /)(x  as a function of x/. We use the GL parameter as  = / = 4. 
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


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r

KrB


  

 

where )(xKn  is the modified Bessel function of the second kind. 

For <r«,  
 

]115932.0)[ln(
2

)(
2

0 




r

rB . 

 

For r», 

)exp(
22

)( 2
0





r

r
rB 


 . 

 

The magnetic flux )(r  inside the circle with a radius r is 
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When r ∞, 0)(  r  

 
In Fig, for simplicity we assume that  
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2
0 



r
K

rB



  for r> 

 
and 
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)(

2

)(
0

2
0 





K
rB




=constant  for r<. 

 
The current density is calculated as  
 

( )
4 4

c c d
B r

dr
 

   J B e . 

 
 
The vortex line energy is given by 
 

)()(
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2

0
1 









 KK






 

  

 
The interaction between vortex lines is 
 

)(
8

)(
4

12
022

2
0

21
0

12 
r

KBU





 r , 

 

where 2112 rr r  

 

 
 
Fig. One dimesional Abrikosov-type structure of vortices.. The red line shows the 

distribution of the normalized order parameter and the blue line shows the 
distribution of the magnetic induction (the internal magnetic field). The center of 
each vortex is denoted by the green lines. 

 
43. Experimental verification of magnetic flux quantization (1961) 



79 
 

Two experimental measurements were published in 1961, by Deaver and Fairbank, 
and by Doll and Näbauer. In both these experiments the flux trapped by a 
superconducting hollow cylinder was found to be quantized, and the accuracy of the two 
experiments was comparable. Doll and Näbauer found that the measured flux quantum 
differed from London's work by as much as 60%, but Buyers and Yang were at Stanford, 
and the Stanford group found that they agreed with the theoretically expected value of 
hc/2e to within 20 %. (D.J. Thouless, "Topological quantum number in norelativistic 
physics, " World Scientific, 1998). 

 
 

 
 

I

3 F0

a

I

6 F0

a
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Fig. The magnetic flux lines (fluxoid) threading in the superconducting ring. Magnetic 

flux is quantized. n = 1, 2, 3,..... Note that n = 3, 6, and 8 in these figures. The 
direction of the supercurrent is denoted in the figure. 

 
The magnetic field B can be measured inside the superconducting ring (with a radius r)  
 

0 nBA  

 
or 
 

2
0

r

n
B




  

 
where  0 2.06783366752 x 10-7 G.cm2. Suppose that r = 10-4 cm. Then we get 

 
B = 6.582 n [Gauss]  (n = 1, 2, 3,...). 

 
which can be easily measured in the laboratories. 
 
44. Cooper pair (1956) 

44.1 Discussion by de Gennes 

Even a weak attraction can bind pairs of electrons into a bound state. The Fermi sea 
of electrons is unstable against the formation of at least one bound pair, 

(i) regardless of how weak the interaction is, 
(ii) so long as it is attractive. 

I

8 F0

a
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((Assumption)) 
The extra electrons are added to a Fermi sea at T = 0 K, with the stipulation that the 

extra electrons interact with each other but not with those in the sea except via the Pauli 
exclusion principle. 
 

 
 
We expect the lowest energy state to have zero total momentum. Two electrons have 
equal and opposite momentum. The orbital wave function  
 

 
k

k iigrr )exp()exp(),( 21210 rkrk
, 

 
which needs to satisfy the condition of anti-symmetry of the total wavefunction with 
respect to the exchange of the two electrons. 
 

)](sin[)](cos[)exp()exp( 212121 rrkrrkrkrk  iii . 

 
First term (even function): anti-symmetric single spin function 
 

2121
[

2

1
)0,0(  . 

 
Second term (odd function): symmetric triplet spin function 
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
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







 

 
Note that 
 

012/12/1 DDDD  .  (angular momentum addition .s rule)  

 
Anticipating an attractive interaction, we expect the singlet coupling to have lower 

energy, because the )](cos[ 21 rrk   gives a larger probability amplitude of the electrons 

to be near each other. Thus we consider a two electron singlet wavefunction, 
 

0 1 2 1 2( , ) cos[ ( )] (0, 0)k

k

g   r r k r r

. 
 
Here we follow the method which is used by de Gennes. He uses 
 

0 1 2 1 2( , ) exp[ ( )]
k

g i    kr r k r r

, 

where kg  is the probability amplitude for finding one electron with k and the other 

electron in the state -k. Note that 
 

0g k   for k<kF,  (Pauli principal) 

 
since the states with k<kF are already occupied. 
 
Schrödinger equation: 
 

),(),(),(),()(
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2
2

2
1

2
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m
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with 
 

 FE 2   (the energy eigenvalue of two systems) 
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we have 
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, (Bethe-Goldstone equation) 

 
where we assume that the potential energy can be described by the Fourier series 
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Then we have 
 

kkk

k

kkk k gg
m

gV F )2()2( 2
2

'
'',  

ℏ
, 
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((Assumption)) 
For simplicity, for 
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2
2

2F F D
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2
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2F F D
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ℏ , 

 
we assume that 
 

VV ',kk
,  (V>0 for attractive and V<0 for repulsive interactions) 

 
otherwise,  0', kkV .  

 

This interaction is attractive and constant in an energy band Dℏ  above the Fermi level. 

Then we get 
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From this we obtain 
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((Density of states)) N(); the density of states per spin 
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Noting that 
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If we assume FD  ℏ , N() can be considered as constant and replaced by its value 

N(0) at the Fermi level. 
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In the limit of weak interaction (N(0)V<<1), 
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Then we get 
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The energy of the Cooper pair relative to the state where the two electrons are at the 
Fermi level. 

There exists a two-electron bound state of energy >0. If we start from a free electron 
gas, and turn on the interaction V, we predict that electrons will group themselves in pairs 
giving up energy to the external world. The normal state is thus unstable. This means the 
existence of a bound state for the two added electrons. 

Cooper showed that, where the interaction is attractive, the system energy is reduced 
by pairing. Therefore, the Fermi sea of single electrons is unstable, since any perturbation 

that moves two electrons above F will lower the system energy. Note that the Cooper 
model is not a model for the superconducting ground state, and that 
 

]
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exp[2]
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1
exp[2

VN
k
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DBD  ℏ . 

 
44.2 Original discussion by Cooper 

L.N. Cooper, Phys. Rev. 104, 1189 (1956). 

J.R. Schrieffer, Theory of Superconductivity (W.A. Menjamin, New York, 1964). 

 

Leon N. Cooper: Superconductivity and Beyond (25 th Army Science Conference, 

Orlando, Florida, November 28, 2006). 

 
The method is more direct compared to the above theory. We start with 
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where -V<0 for the attractive potential. Here we introduce E (the energy eigenvalue), 
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Then we have 
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or 
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where E is the energy eigenvalue of the system 
 
 
44.3 Example 

First we consider the simple example. Suppose that 
 

N1 = 10,  )2(2
1N

k
k   

 
where k = 1, 2, ..., 10. In other words, 
 

k2 2, 2.1, 2.2, 2.3,…, 2.8, 2.9, 3. 
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We make a plot of f(E) as a function of E.  
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Fig. Plot of f(E) as a function of E. The dashed line (-1/V = 40) for the repulsive 

interaction. The dashed line (-1/V = -20) for the attractive interaction. The last 
crossing on the left is the coherent state, split from the continuum by an energy 
gap, displaying the essential singularity in the coupling constant. 

 
 

What is the solution of )(
1

Ef
V

 ? 

(i) When V<0 (repulsive) the solution of E is always larger than 2. 
 
(ii) When V>0 (attractive), we have a solution of E, which is lower than 2. This means that 

the two electrons forms a Cooper pair (bound state). 
 
((Note)) 
Leon N. Cooper: Superconductivity and Beyond (25 th Army Science Conference, 

Orlando, Florida, November 28, 2006). 

 
“Allow me (Cooper himself) to show you a page from my notes of that period with the 

pair solutions as they first appeared to me.” 
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Fig. From the note of Cooper around 1956. 
 
44.4 The derivation of energy gap 
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where )( FN   is the density of states per spin (per unit volume). Then we have 
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In the weak coupling ( VN )0( <<1), we have 
 

]
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Note that 
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is the bound state energy for the Cooper pair (V>0; attractive interaction). 
 

 
 
44.5 Eigenvalue problem 

Degenerate matrices have some very surprising properties. We return to the original 
eigenvalue problem 
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Here we assume that 
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
is independent of k since k is nearly equal to F (degenerate states). 
 
For simplicity we consider the matrix (N x N) for the example. The eigenvalue problem is 
given by 
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where -V<0 (attractive interaction). When diagonalized, what happens to the energy 
eigenvalue? The schematic diagram is shown below.  
 

 
 
Fig. Schematic diagram of the energy levels.  
 
The lower level is a coherent superposition of all the original states and is separated from 
them by an energy gap. 
 
44.6 Numerical calculation using Mathematica 

We solve the eigenvalue problems for the (24x24) matrix with V = 0.1 (-V<0 means 
attractive interaction). The results are as follows. 
(i) The ground state (1 state) with the lowest energy; -(24-1) x 0.1 = -2.3 
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(ii) The degenerate states (23 states) with the energy 0.1. 
(iii) The ground state is a coherent states; linear combination of the state with the same 

amplitude.  
 
________________________________________________________________________ 

((Mathematica)) 
 

 
________________________________________________________________________ 

Clear@"Global`∗"D; N1 = 24; a = 0.1; A@i_, j_D := −a;

B@i_, j_D = a KroneckerDelta@i, jD; M1 = Table@A@i, jD, 8i, 1, N1<, 8j, 1, N1<D;
M2 = Table@B@i, jD, 8i, 1, N1<, 8j, 1, N1<D; M = M1 + M2; eq1 = Eigensystem@MD;
eq1@@1DD; f@n_D := Table@8k, Normalize@eq1@@2, nDDD@@kDD<, 8k, 1, N1<D;
g@n_D := ListPlot@f@nD , PlotStyle → 8Thick, Hue@0.08 nD<, Joined → True,

PlotRange → 880, N1<, 8−1, 1<<,
Epilog → 8Text@Style@"E=" > ToString@ eq1@@1, nDDD, Black, 12D, 812, 0.6<D,

Text@Style@"n=" > ToString@ nD, Black, 12D, 812, 0.9<D<D;
K1 = Table@g@mD, 8m, 1, 8<D; K2 = Table@g@mD, 8m, 9, 16<D;
K3 = Table@g@mD, 8m, 17, 24<D;
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Fig. Pattern of superposition in the amplitudes of thenormalized wavefunction. 

E (= E1 = -+V) is the eigenvalue. n is the mode number ( n = 1 - 24). n = 
1 corresponds to the ground state with E = -2.3. n = 1 is the coherent 
ground state. -V = -0.1 (attractive interaction). In this calculation we mean 
E by E1. 

 
46.7 Classification of the superconductivity : s-wave, p-wave, and d-wave 

 
(a). Introduction 

We consider two fermions which are subject to a central field. In this case the wave function 
can be described by 
 

)"'(",')",'( rrrrrr   r . 

 
This wave function can be decomposed into a radial part and a spherical-harmonics part,  i.e. 
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),()(,,)(  m

lnl YrRmln  rr  

 
Note that exchanging the two particles is equivalent to inverting the vector "' rr   (i.e. changing 
its sign). With such an inversion, the spherical harmonics undergo the transformation 
 

),()1(),(  m

l

lm

l YY   

 
Suppose that the fermion is an electron with spin s = 1/2. In this case the total spin is S = 1 
(triplet, symmetric state) and S = 0 (singlet, anti symmetric state). The wave function should be 
antisymmetric under the exchange of the position. This requires the conditions for l = even and S 
= 0, and l = odd and S = 1. 
 
b. Parity operator and permutational operator 

 

21211212 '""'ˆ",'ˆ rrrrrr  PP , 

 
When 
 

  0ˆ,1̂2 HP  
 
we have the simultaneous eigenket  ; 

 

 12P̂ ,   EH ˆ  

 
Then we have 
 

 ",'ˆ",' 12 rrrr P  

 
or 
 

 ",''," rrrr   

 
We introduce the relative co-ordinate 
 

"' rrr   
 

",' rrr  , rrrr ̂',"   

 
Then we have 
 

 rr   

 



97 
 

or 
 

 rr ˆ  

 
or 
 

 ˆ  

 
This implies that 
 

̂1̂2 P  
 
We consider the relative motion for the two electrons. The Hamiltonian for these systems, can be 
described by that for one electron with the reduced mass. 
 

nlm  

 
We note that 
 

mlml l ,)1(,ˆ   

 
Then the orbital state with even integer of l has the even parity, while the orbital state with odd 
integer of l has the odd parity. 
 
c. Classification of the symmetry for superconductivity 

When we take into account of the spin states, the symmetry of the resultant eigenket should 
be anti-symmetric. In other words, 
 

S = 0 (antisymmetric)  with l = even. 
S = 1 (symmetric)  with l = odd. 

 
S-state (BCS Cooper pair) 
 

l =0, S = 0  S1  j = 1 (3 states) 
 
P-state (liquid 3He superfluidity) 
 

l =1, S = 1  P3  j = 2, 1, 0 (9 states; 5+3+1=9) 
 
D-state (high Tc superconductor) 
 

l =2, S = 0  D1  j = 2 (5 states) 
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The onset of superconductivity occurs with the condensation of electron pairs. These electron 
pairs, called the Cooper pair, can be in a state of either total spin S=0 (spin singlet) or 1 (spin 
triplet). Being fermions, electrons anticommute. Therefore the antisymmetric spin-singlet state is 
accompanied by a symmetric orbital wave function (even parity) and vice versa, in order to 
preserve the anti-symmetry of the total wave function.  
 
________________________________________________________________________ 
45. BCS Hamiltonian 

We start with a pairing Hamiltonian 
 

 






 
qk

qqkkqk

k

kkk aaaaVaaNH
,

,
,

 . 

 

 
 

Fig. Two pairs of electrons (q, ; -q, ) and (k, ; -k, ), which are coupled with the 
electron phonon interaction (Vk,q). The phonon has a momentum (k - q).  

 

where  is the chemical potential;  = F (the Fermi energy).  
Here we use the mean field theory. The expectation value is all one needs to 

understand the nature of the ground state. This can be accomplished by setting  
 























 

kkkkkkkk
aaaaaaaa )(  
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 
kkkkkkkk

aaaaaaaa )(  

 
by treating the first term as small compared to the second term (its average), and 
expanding to first order in the small quantities. For simplicity we use 
 


kkk aab ,  





kkk aab
*  

 
Using such an approiximation, we get 
 

qkkkqqqk

qkqkqkkkqqqk

qkkkkqqqqk

qqqqkkkkqqkk

bbaabaab

bbbbbbaabaab

bbbaabbaab

bbaabbaaaaaa

**

****

***

**

)()(

])][()[(








































 

Then we have 
 






























k

kkkkkkkk

k

kkk

qk

qkkkqkkqqk

k

kkkF

baaaaaa

bbaabaabV

aaNH

)(

][

**

,

,

**
,

,











 

 
where 
 

Fkk   . 

 
The gap parameter is defined by 
 

  
q

qqk

q
qqqkk bVaaV ,, , 

 
or 
 

  





q

qqk

q
qqqkk bVaaV

*
,,

* . 

 
The above Hamiltonian can be diagonalized using the Bogoliubov transformation, 
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














 




















k

k

kk

kk

k

k

a

a

uv

vu
*


, 

 
where we assume that uk is real and 
 

1|||||| 2222  kkkk vuvu . 

 
This condition can be derived from the commutation relation, 
 

1],[  










 kkkkkk
 . 

 
Note that 
 

1||||||

],[],[

],[||],[||

],[],[

2222

**

22

**




































kkkk

kkkkkkkk

kkkkkk

kkkkkkkkkk

vuvu

aavuaavu

aavaau

avauavau

 

 
The inverse Bogoliubov transformation is given by 
 


































 



























k

k

kk

kk

k

k

kk

kk

k

k

uv

vu

uv

vu

a

a







*

1

* . 

 
Using the Bogoliubov transformation, the above Hamiltonian can be rewritten as 
 

]))((

))(([

))((

))((

**

**

*

*

kkkkkkkkkkk

k
kkkkkkkkk

k
kkkkkkkkk

k
kkkkkkkkk

bvuvu

vuvu

vuuv

vuvuNH




















































 

 

where kk   . In order to diagonalize the Hamiltonian it is required that the coefficients 

of  kk
  and 





 kk
  should be equal to zero. Then we have 
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02 2*2**  kkkkkkk uvvu , 

 
and its conjugate 
 

02 22*  kkkkkkk uvvu . 

 
We use the second quadratic equation. 
 

02
*2



































k

k

k

k

k

k

k

k

v

u

v

u 
. 

 
The solution of this equation is obtained as 
 

k

kk

k

k E

v

u







, 

 
where 
 

22
kkkE   . 

 
We will show later that the plus sign should be chosen to get the minimum energy. Then 
the Hamiltonian H can be rewritten as 
 

  




 
k

kkkg kk
EEH )(  , 

 
where 
 

 
k

kkkkkkkkkkg bvuvuvE ]2[ ***2  

 
Eg is the ground state energy. The above Hamiltonian clearly indicates the energies of the 
excitations above the ground state. Since 
 

k

kk

k

k E

v

u







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uk and kk E  are real, which means that the phase of k is the same as that of vk. We 

assume that 
 

ki

kk e
  

 

 
22

2

22

22
)(2

1
1

k

kkk

k

kk

kk

kk EEE

vv

vu











 
 

 

Using the normalization condition ( 1|| 22  kk vu ), we have 

 

k

kk
k

E

E
v

2

)(2 ∓
  

 
The energy of the ground state Eg can be rewritten as 
 

















k

kkkk

k

kkkk

k

kkkkkkk

k

kkkkkkkkkkg

bE

bEv

bEvv

bvuvuvE

])([

]2[

])(22[

]2[

*

*2

*22

***2







∓∓

∓
 

 
where the double signs are in order. In order to get the minimum value of Eg, we need to 
choose 
 

)1(
2

1

2

)(2

k

k

k

kk
k

EE

E
v





 , 

 
leading to 
 

 
k

kkkkg bEE ][ *  

 
which is the ground state energy. Then we also have 
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)1(
2

12

k

k
k

E
u


 , 

 
and 
 

2

2

2

2
22

4
)1(

4

1

k

k

k

k
kk

EE
vu





. 

 
The condensation amplitude F is given by 
 

k

k

kkk
E

vuF
2


 . 

 
We note that the quasi-particle occupation numbers follows the Fermi-Dirac function, 
 

1)exp(

1
)(


 








k

kkkkk
E

Ef


 , 

 

where )( kEf  is the Fermi-Dirac distribution function and 
TkB

1
 . The parameter vk is 

related to  
 

k

kk

k

k E

v

u







, 

 

or 

 

kk

i

k

k

kk

k
kk

E

e
u

E
uv

k














. 

 

The phase of k is the same as that of vk. 
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Fig. Excitation spectrum. k . 

 

 
Fig. Plot of uk

2 and |vk|2 as a function of /. k . In a normal phase, the 

momentum distribution (vk|2)  drops discontinuously at  = 0 (k = kF). In the 

superconducting phase, this drop is smeared out on an interval k ≈1/0, where 0 
is the coherence length. 
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Fig. Plot of the condensation amplitude Fk = uk |vk| as a function of /. k  

 
46. The gap equation 

We start with the energy gap equation at finite temperature given by 
 

 
q

qqqkk aaV ,  

,
 where 
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qq
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E
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
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



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
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where we use 

 

0 



 qqqq
 , 

 

1],[  










 qqqqqq
 . 

 

Then we get 
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



q

q

q

q

qkk

E

E
V )

2
tanh(

2,


. 

 
In order to simplify this equation, we assume that 
 

VV qk ,  if Dk  ℏ  and Dq  ℏ . 

 
0, qkV  otherwise. 

 

where  BD kℏ  and  is the Debye temperature. Then k  becomes independent of k 

and the above equation reduces  
 

 
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q

q

q

E

E
V )

2
tanh(

2


. 

 
The final form of the gap equation is 
 

 



q
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qq
q

q

q
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EV
)

2
tanh(

2

1
)

2
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2

11 22
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






, 

 

We assume that  q
. 

 
(1) The energy gap at T = 0 K 
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where )0(N is the density of states per spin at the Fermi surface.  
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(2) Critical temperature Tc 

The energy gap is equal to zero at the critical temperature Tc. 
 

0   at T = Tc. 
 
This equation can be rewritten as 
 

)
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, 

 

where  = 0.577216 is the Euler's constant. Here we use the fact that  
 

ccB

D

TTk




ℏ
 

 

is very large. For Al (type-I superconductor), in fact, Tc = 1.14 K and  = 428 K, The n 
we have 
 




14.1

428

cT
375.439>>1, 1)

2
tanh()

2
tanh( 




ccB

D

TTk

ℏ
 

 
Then we get 
 

81878.0)
2

ln(
)0(

1


cB

D

TkVN

ℏ
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since 81878.0])
4

[ln(  


. This can be rewritten as 

 

]
)0(

1
exp[881939.0

)81878.0exp(]
)0(

1
exp[2

VN

VNTk cB

D




ℏ

 

 
or 
 

]
)0(

1
exp[13387.1

VN
Tk DcB  ℏ . 

 
Since 
 

]
)0(

1
exp[20

VN
D  ℏ  

 
we have 
 

52774.3
13387.1

42 0 


cBTk
 

 
or 
 

cBTk52774.32 0   = 0.303997 Tc[K] (meV) 

 

02 is the energy gap for the breaking up of 1 Cooper pairs (two electrons). 
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Fig. 20 [meV] vs Tc [K], predicted from the BCS theory. 
 
((Note)) 

The ratio 52774.3  )
2

( 0

cBTk


  is a 'universal' value independent of Tc and other variables. It 

should be noted , however, that this value is obtained within the so-called weak coupling 
approximation in the BCS theory. The actual value of the ratio for ordinary 
superconducting metals with low Tc is close to this weak coupling value, but for metals 
with higher Tc, this ratio deviates from the universal constant. 
 

 Tc 20/kBTc C/Cn  
__________________________________________ 
BCS  3.52774 1.43 
Al 1.18 3.53 1.43 
Cd 0.52 3.44 1.32 
Sn 3.72 3.61 1.60 
Hg 4.15 3.65 2.37 
Pb 7.20 3.95 2.71 
Nb 9.25 3.65 1.87 

 
47. Temperature dependence of energy gap 

We start with the energy gap equation 
 

5 10 15 20
TcHKL

1

2

3

4

5

6

2DH0L@meVD

BCS theory
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Using the expansion formula 
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0
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Then we have 
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7
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where 
 

)3(
8

7
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1

0
3


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

n n
. 

 

and (3) = 1.2206. Using the relation 
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
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
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The energy gap is obtained as 
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in the vicinity of T = Tc. We make a plot of two functions (a) 2/1)1(
cT

T
  and (b) 

)ln(
T

T

T

T c

c

 as a function of T below Tc. It is found that these curves agree very well.  

 

 
 

Fig. Plot of )06326.3/()()( cBTkTtf   as a function of reduced temperature t = T/Tc. 

We show two curves, f(t)  = 2/1)1( t  (red line) and )/1ln( tt  (blue line). 

 
((Mathematical note)) 

Suppose that  
 

x
T

T
t

c

 1  

 
where x is close to x ≈ 1 (but x>0) 
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t
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Then in the vicinity of T = Tc (but T<Tc), we have 
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)1()ln(
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
 

________________________________________________________________________ 
The energy gap is an order parameter for the superconducting transition. The critical 

exponent  for the order parameter is  = 1/2 as is predicted from the mean field theory. 
We note that 
 

cBTk
2

5277.3
0  . 

 
Using this, we have 
 

2/12/1

0

)1(73669.1)1(
5277.3
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2

)(
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T

T

T

T
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TkT





. 

 
48. Density of states 

The BCS spectrum is easily seen to have a minimum k for a given direction k on the 

Fermi surface; k therefore, in addition to playing the role of order parameter for the 
superconducting transition, is also the energy gap in the quasi-particle spectrum. To see 
this explicitly, we can simply do a change of variables in all energy integrals from the 

normal metal eigenenergies k to the quasiparticle energies Ek: 
 

Fk   , 

 
22  E ,  or  22  E  

 

 dNdNdEEN nn )0()()(  , 

 

since  ≈ 0. Then we get 
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Fig. Plot of 

E

 vs the normalized density of states 
)0(

)(

nN

EN
. N(E) is the density of state 

per spin. 
 
49. Evaluation of the energy of ground state, Eg 
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We assume that k is independent of k. Then the energy gap equation can be expressed 
by 
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Then the ground state energy Eg can be rewritten as 
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Here we assume that  is a positive real value. 
 

n

k k

k

k

k

k

kk

k k

k

k

k

k k

k

k

k
g

E
E

E

EV
E










 

 

 










2

2

22

)(

)(

 



116 
 

 
where En is the energy of the normal state. Then the above equation can be rewritten as 
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We note that the energy gap  is related to the thermodynamic critical field Hc(0) as 
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((Note)) 
Here we use the formula 
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The energy gap equation id 
 

)(sinh)0()0(
2

)0(1 1

0
2222 







 


 DVN

d
VN

d
VN

DD

D









 



ℏ
ℏℏ

ℏ

, 

 
or 
 


 D

VN

ℏ
]

)0(

1
sinh[ , 

 
or 
 

DD
D

VN

VN




ℏℏ
ℏ

2]
)0(

1
exp[2

]
)0(

1
sinh[

 . 

 
50. Physical meaning 

The energy gap at T = 0 K is given by 
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Note that the unit of left-hand side is Oe2 = erg/cm3. Here we use the following relation 
for the electronic specific heat in the normal state 
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with 
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Suppose that the atom (showing the superconductivity) has a molar mass M (g) and a 

density  (g/cm3). 
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in the units of Oe. 

(i) Hc(0) is proportional to 
cT

M


 . 

(ii) If Tc is very high, then Hc(0) is also very high. 
 
((Example)) 
(i) Pb,  

= 11.34 g/cm3,  M= 207.2 g/mol. 

 = 2.98 mJ/(mol K2).  Tc = 7.193 K 
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)0(cH =708.1 Oe (calculation) 

)0(cH =803 Oe (experiment) 

 
 
(ii) Sn 

= 7.365 g/cm3,   M= 118.692 g/mol. 

 = 1.78 mJ/(mol K2).  Tc = 3.722 K 
 

)0(cH =301.5 Oe (calculation) 

)0(cH =309 Oe (experiment) 

 
(iii) Al 
 

= 2.70 g/cm3,   M= 26.9815 g/mol. 

 = 1.35 mJ/(mol K2).  Tc = 1.140 K 
 

)0(cH =102.1 Oe (calculation) 

)0(cH =105 Oe (experiment) 

 
All the experimental data of g, Hc and Tc are obtained from the ISSP Kittel (8th-edition).  
_______________________________________________________________________ 
51. BCS Ground state 

According to BCS, the ground state can be expressed by 
 

  

k

vackkk BvuBCS )( , 

 
where kB  is a pairing operator, and is defined by 

 


kkk aaB , 

 
and an operator Hermitian conjugate to the operator kB  is given by 

 












 
kkkkk aaaaB . 

 
The parameters uk and vk can be determined such that the BCS ground state is to be 
minimized over the space of uk and vk. Another method (as is already discussed above) is 
the diagonalization of the BCS Hamiltonian by using the Bogoliubov transformation. We 
will show that these two methods are equivalent. 
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Since there is no quasi particle in the ground state, we have 
 

0 BCS
k

 , 0 BCS
k

 . 

 

vac  is the vacuum state. We use the Bogoliubov transformation; 

 
















 




















k

k

kk

kk

k

k

a

a

uv

vu
*


,  



















 






















k

k

kk

kk

k

k

a

a

uv

vu
*




, 

 
or 
 






































k

k

kk

kk

k

k

uv

vu

a

a




* ,  











































k

k

kk

kk

k

k

uv

vu

a

a


*

. 

 
Here we assume that 

kk uu *  (real number). vk is in general a complex number.  

Then the above relations can be rewritten as 
 

0)(  
 BCSavauBCS

kkkkk
 , 

 
and 
 

0)(  
 BCSavauBCS

kkkkk
 . 

 
This means that BCS  is a vacuum state for quasi-particles. 

 
52. The formation of the BCS ground state by the successive addition of Cooper 

pairs 

The BCS state can be formulated from the successive addition of Cooper pairs to the 
vacuum state. 
 

vac ; 
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________________________________________________________________________
_ 

vackkkk aavu  



 )(

1111
; 

 

 
 

O
kx

k y

O
kx

k y

»k1,Æ>

»-k1,∞>

»k1,Æ>

»-k1,∞>
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________________________________________________________________________
_ 

vackkkkkkkk aavuaavu  









 ))((

11112222
; 

 

 
 
________________________________________________________________________ 

vackkkkkkkkkkkk aavuaavuaavu  















 ))()((

111122221111
; 

 

O
kx

k y

»k1,Æ>

»-k1,∞>

»k1,Æ>

»-k1,∞>

»k2,Æ>

»-k2,∞>

»k2,Æ>

»-k2,∞>
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  

k

vackkk BvuBCS )(
 

 

 

O
kx

k y

»k1,Æ>

»-k1,∞>

»k1,Æ>

»-k1,∞>

»k2,Æ>

»-k2,∞>

»k2,Æ>

»-k2,∞>

»k3,Æ>

»-k3,∞>

»k3,Æ>

»-k3,∞>
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53. The commutation relation 

 

53.1. Fermion operators 

The Fermion operators satisfies the anticommutation relation. 
 

',','''''' ],[   kkkkkkkk aaaaaa  


 . 

 
0],[][ ''''  


  kkkk aaaa . 

 
Using the vacuum state vac , we have 

 

vacvackk aa 
 ],[  ,

 
 
or 
 

vacvackkkk aaaa   )(  ,
 

 
or 

vacvackkvackk aaaa   )1(  . 

 
53.2 Paring operators Bk and Bk+ 

The application of kB  to vac  yields 

 
0  vackkvack aaB , 

 
and 
 

0 
kvac B . 

 
Similarly, we get 
 

vackkvackkvack aaaaB  











 , 

 

The application of 
kk BB to vac yields 
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vac

vackk

vackkkkvackk

vackkkk

vackkkk

vackkkk

vackkkkvackk

aa

aaaaaa

aaaa

aaaa

aaaa

aaaaBB






















































)1(  

 
_____________________________________________________________________ 
54. Fermion operators and boson operators 

 
(1) 

)21(

],[






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





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





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
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kkkkkkkk
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aaaaaa

aaaaaaBa

 

 
(2) 

)21(

],[
















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








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kkkkkk
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aaaaaaBa

 

 
(3) 
 

0

],[







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




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
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(4) 
 

0

],[
















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
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
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
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
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

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aaaaaa
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(5) 
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)21(

],[
















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
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
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



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

kkk

kkkkkk

kkkkkkkk

aaa

aaaaaa

aaaaaaBa

 

 
(6) 
 

















































k

kkkkk

kkkkkk

kkkkkkkk

a

aaaaa

aaaaaa

aaaaaaBa

)(

],[

 

 
When these operators are applied to vac , we have 

 
(a) 
 

vackvackkkvackkvackk
aaaaBaBa  












 )21(],[ , 

 
or 
 

vackvackk
aBa  




 . 
 
(b) 
 

vackvackkkvackkvackk
aaaaBaBa  












 )21(],[ . 

 
or 
 

vackvackk
aBa  





. 

 
(c) 
 

vackvackkkvackk
aaaaBa  









 )21(],[ . 

 
or 
 

vackvackk
aBa  





. 

 
(d) 
 

vackvackkkkvackk
aaBBaBa  







 )(],[ , 
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or 
 

vackvackk
aBa  





. 

 
________________________________________________________________________ 
55. The nature of the BCS ground state 

Here we show that, 
 

0 BCS
k

 . 0 BCS
k

 . 

 
((Proof)) 
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and 
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
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Here we note that 
 

0 









 vackkkvackk

aaaBa ,

 
 

0 









 vackkkvackk

aaaBa , 

 
from the Pauli's exclusion principle; No two electrons can occupy the one state denoted 
by ,k , where k is the wavenumber and  is the spin up or down state. 

____________________________________________________________________ 
56. Paring operators 

 


kkk aaB , 
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





 
kkk aaB  

 
The pairing operators obey commutation relations given by 
 

',' )1(],[ kkkkkk nnBB 
   

 
with 
 



 

kkk
aan , 




 
kkk

aan . 

 
and 
 

0],[ ' kk BB . 

 
)1(2],[ ','' kkkkkk BBBB  . 
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since 
 

vacvackk aa 
 , 

 
we have 
 

0vackB , 0 
kvac B . 

 
57. Normalization of the ground state: 
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since 
 

1*2  kkk vvu . 

 
________________________________________________________________________ 
58. Excited state: quasi particles 
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since 
 

vackvackk
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and  
 

1*2  kkk vvu . 
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(iii) 
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From these, it is found that 
 

ground state Cooper pair (k, -k):  )(  kkk Bvu . 

the first excited state (k): 
k

a . 

the first excited state (-k): 
k

a . 

the excited state (k) and (-k): )( *
kkk vBu  . 

 
________________________________________________________________________ 
59. Condensation amplitude 
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Fk is the condensation amplitude in the state k. 
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________________________________________________________________________ 
60. The number operator: 

The number operator is define by 
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The average of N for the BCS state is 
 

2
2

k

kvBCSNBCSN . 

 
222222 4)2(  

k

kk

k

k vuvBCSNBCSN . 

 
The fluctuation is given by 
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The quantities uk and |vk| will typically be numbers of order 1, so since the numbers of 
allowed k-states appearing in the k sums scale with the volume  of the system, we have  
 

N , and     2
N .  

 
Therefore the width of the distribution of numbers in the BCS state is  
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As N ≈ 1023 particles, this relative error implied by the number non-conservation in the 
BCS state becomes negligible. 
 
________________________________________________________________________ 

61. Relation between N  state and BCS  state. 

Here we assume that 
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where  is the phase of the order parameter. This indicates that the BCS state can be 
expressed as the superposition of N  as 
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We also have the expression 
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AN is the probability for finding the system in the N . AN may be expressed by a 

Gaussian distribution given by 
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Fig. AN which has a Gaussian distribution with <N> = N* = 104 and N =10. The blue 

arrow is the full-width at half maximum. In this figure, )/(  NN  = 2.355 x 
10-3. 

 
For an arbitrary operator F, the matrix element is given by 
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(a) Suppose that F conserved the number of particles' 
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(b) If F acting on N  gives a state of N + p particles.  
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These expectation values do not vanish in the state )(BCS . It is clear that this state is 

much simpler than N , and, moreover, manifestly shows essential features of 

superconductivity. 
 
62. BCS Theory 

We start the so-called the BCS Hamiltonian 
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We assume that uk and vk are real.  
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which is to be minimized subject to the constant that 
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kku sin ,  
kkv cos , 

 

 
lk

lkkl

k

kkBCS VBCSNHBCSW
,

2 )2sin()2sin(
4

1
cos2ˆˆ  . 

 
Then we get 
 

0)2sin()2cos(
2

1
)2sin(2ˆˆ

,






lk

lkkl

k

kk

k

VBCSNHBCS 


, 

 
or 
 


l

lklkk V )2sin(
2

1
)2tan(  . 

 
We define the energy gap equation by 
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The gap energy is determined from the gap equation 
 

2222
ll

l

l

kl

l

l

l

klk V
E

V






 


. 

 
We choose the simplified interaction (BCS interaction), 
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This equation only has a solution for positive V, 
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where N(0) is the density of states per spin at the Fermi level. 
_______________________________________________________________________ 
63. Summary 
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2:  probability that the Cooper pair (k, -k) is occupied. 

uk
2:  probability that the Cooper pair (k, -k) is unoccupied. 
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where Ek is the excitation energy and is defined by 
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Fk is the condensation amplitude and is defined by 
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Fig. Plot of uk

2, vk
2, and Fk= ukvk as a function of /. We assume that vk is real for 

convenience. 
 
There is an energy gap between the ground state and the excited state. The excitations 
consists of the breaking of pairs. The excitation energy is the sum of Ek for each excited 
electrons in each pair. The superconducting state is a condensed state in the sense that a 

finite energy  is required to produce an excited state of the whole system. 
 
64. Thermodynamic critical field 
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Comparing this to the normal state energy ( = 0), measured relative to F, 
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65. Mean field approximation at finite temperatures 

At finite temperatures, quasi-particles are thermally excited. We need to take into 
account of the effect in the mean field theory. To this end, the average over the BCS 
ground state is replaced by the average in the thermal equilibrium, such that 
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Here we use the Bogoliubov transformation given by 
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The Fermi-Dirac distribution function is given by  
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where < > is the average in the thermal equilibrium at the finite temperature. We also 
note that 
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since the number of particles are not conserved. Based on these rules, we can calculate 
the following quantities. 
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66. Fermi-Dirac function 

The Fermi-Dirac distribution function is defined by 
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and 
 

cBTk5277.32  .  (BCS prediction) 

 

 
 

Fig. Plot of f(E) as a function of /. t is the reduced temperature; t = T/Tc. t = 0.2, 0.4, 
0.6, 0.8, 1.0, 1.2, and 1.4. 

 

This function is an unusual Fermi function. The denominator features exp(E), rather 

than the conventional form exp[(-F)]. Because of E>0, f(E) reaches its maximum at 
the Fermi level, and it decays to zero when k lies either above or below. We also have the 
relation 
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Fig. Plot of 1-f(E) as a function of /. t is the reduced temperature; t = T/Tc. t = 0.2, 
0.4, 0.6, 0.8, 1.0, 1.2, and 1.4. 

 
67. Order parameter: coherence length and phase 

The wavefunction is defined as 
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where  is the volume of the system. Then the order parameter of the superconducting 
phase is defined by the form of correlation of the wavefunctions at r and r'. 
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where we use the above formula 
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When T0, )( kEf =0, and 
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since kk uu  . Then the order parameter )(r  at T = 0 can be evaluated as 
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where K0(x) is the modified Bessel function of the second kind. 0  is the coherence 

length and is defined by 
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Note that in the limit of x  ,  
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The form of )(r  shows that the coherence length 0  represents the spatial extension of 

the Cooper pair. 
 
68. Phase of the order parameter 

The order parameter at the finite temperature can be expressed by 
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The phase of the order parameter comes from the phase of kv  ( i
kk evv  ) as 
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Then the order parameter can be rewritten as 
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The parameter  is the phase of the order parameter. The order parameter has a wave-like 
nature. Such character is found to appear in the Josephson effect.  
 
________________________________________________________________________ 
69 Coherence length of Al and Sn 
(1) Al (type-I superconductor) 

kF = 1.75 x 108/cm. 
vF = 2.02 x 108 cm/s. 

F = 11.63 eV. 
Hc = 105 Oe. 

2 0 = 0.340 meV = 3.94553 K. 

0 = 1.973 K. 

Tc = 1.140 K. 
 

2 0 /kBTc = 3.461. 

 

0
0 



 Fvℏ

 = 2489.5 nm. 

 
((Experiment)) Al 

Coherence length:   0 = 1600 nm. 

London penetration depth  L = 16 nm. 
 
(2) Sn (type-I superconductor) 

kF = 1.62 x 108/cm. 
vF = 1.88 x 108 cm/s. 

F = 10.03 eV. 
Hc = 309 Oe. 

2 0  = 1.15 meV = 13.345 K. 

0  = 6.6726 K. 

Tc = 3.722 K. 
 

2 0 /kBTc = 3.585. 
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0
0 



 Fvℏ

 = 685.0 nm = 6850 Å. 

 
((Experimental values)) Sn 

Coherence length:   0 = 230 nm. 

London penetration depth  L = 34 nm. 
 
_______________________________________________________________________ 
70. Approach from the Heisenberg's principle of uncertainty 

In the BCS theory, the Cooper pairs are formed from electrons having the energy 
close to the Fermi energy. Using the Heisenberg's principle uncertainty, we have 
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where vF is the Fermi velocity. Note that the average distance between electrons d is 
approximated by 
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When F>>, we have 
 

d . 
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71. Character in charge of quasi-particles 

The charge density is defined by 
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Here Qs is the contribution of the condensate of the Cooper pairs, and Qqp is the 
contribution of the quasi-particle excitations, 
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and 
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Here we use the formula 
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.

  
We make a plot of 
 

)()(
22

kkkk Efvuh  , 

 

It s found that the sign of hk changes from positive (hole-like for <0) to negative 

(electron-like for >0). This means that the quasi-particles behave like an electron for 

>0 and like a hole for <0. 
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Fig. Plot of )()(
22

kkkk Efvuh  , corresponding to the charge of quasiparticle, as a 

function of /. t = T/Tc. t is changed as a parameter. 
 
72. Condensation amplitude at finite temperature 

The condensation amplitude at finite temperature is given by 
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Here we assume that vk is real. Then we have 
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We make a plot of Fk as a function of k/k = /, where t = T/Tc is changed as a 
parameter. 
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Fig. Plot of the condensation amplitude F as a function of /. /. t is the reduced 
temperature; t = T/Tc. t = 0.2, 0.4, 0.6, and 0.8. We assume that the energy gap is 
independent of t. 

 
73. Specific heat 

The electronic entropy in the superconducting phase is given by 
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where f(E) is the Fermi Dirac function and the factor 2 comes from the degree of freedom 
in spin. 
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Then the specific heat is calculated as 
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(i) At low temperatures (T<<Tc), where  is independent of T. 
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The density of states is defined as 
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in the limit of 0 →∞, where Kn(x) is the modified Bessel function of the second kind 

and has a symptotic form of 
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where 

 

cBTk5277.32 0  .
  

We make a scaling plot of ])0(2/[ 0Bes kNC  as a function of 
TkB

0
. 

 

 
 

Fig. Plot of ])0(2/[ 0Bes kNC   as a function of kBT/0 for T<<0/kB. 

 
(ii) At T = Tc, where  = 0. The first term is continuous through the transition ( →0) 
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Note that E  in the limit of  →0. The specific heat jump at Tc is given by 
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((Mathematica)) 
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APPENDIX-I 

Formula related to the BCS theory 

 
The magnetic quantum flux (fluxoid, or fluxon) is 
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The coherence length at T = 0 K 
 

0
0 



 Fvℏ

. 

 

The energy gap at T = 0 K: 
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The energy gap 
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The specific heat discontinuity: 

 

43.1
)3(7

12
| 


cT

n

ns

C

CC
.
 

________________________________________________________________________ 

Bogoliubov transformation: 



155 
 

 
















 




















k

k

kk

kk

k

k

a

a

uv

vu
*


,  



















 






















k

k

kk

kk

k

k

a

a

uv

vu
*




. 

 
or 
 






































k

k

kk

kk

k

k

uv

vu

a

a




* ,  











































k

k

kk

kk

k

k

uv

vu

a

a


*

. 

 

The excitation energy of quasiparticle 
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Density of states for the quasi-particles 
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The BCS ground state: 
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APPENDIX-II The heat capacity of electrons per mol atom 

The heat capacity of N electrons is given by 
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Suppose that each atom has nv conduction electrons. The total number of electrons is N; 
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So each atom has the electronic heat capacity as 
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The heat capacity per mol atom is 
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where NA is the Avogadro number. 
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  is related to )( FAD  as 
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