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Unlike other types of radiation used in diffraction studies of materials, such as x-rays and 

neutrons, electrons are charged particles and interact with matter through the Coulomb forces. This 

means that the incident electrons feel the influence of both the positively charged atomic nuclei 

and the surrounding electrons. In comparison, x-rays interact with the spatial distribution of the 

valence electrons, while neutrons are scattered by the atomic nuclei through the strong nuclear 

forces. In addition, the magnetic moment of neutrons is non-zero, and they are therefore also 

scattered by magnetic fields. Because of these different forms of interaction, the three types of 

radiation are suitable for different studies 

https://en.wikipedia.org/wiki/Electron_diffraction 

 

 

 

Clinton Joseph Davisson (October 22, 1881 – February 1, 1958), was an American physicist who 

won the 1937 Nobel Prize in Physics for his discovery of electron diffraction. Davisson shared the 

Nobel Prize with George Paget Thomson, who independently discovered electron diffraction at 

about the same time as Davisson. 

 

 
http://en.wikipedia.org/wiki/Clinton_Joseph_Davisson 

 

Sir George Paget Thomson, FRS (3 May 1892 – 10 September 1975) was an English physicist 

and Nobel laureate in physics recognised for his discovery with Clinton Davisson of the wave 

properties of the electron by electron diffraction. 
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http://en.wikipedia.org/wiki/George_Paget_Thomson 

 

______________________________________________________________________________ 

LEED (low energy electron diffraction) is a technique for the determination of the surface 

structure of crystalline materials by bombardment with a collimated beam of low 

energy electrons (20 - 200 eV) and observation of diffracted electrons as spot on 

the fluorescent screen. This experiment can be performed in an ultra-high-vacuum 

environment. 

 

RHEED (reflection high-energy electron diffraction) is a technique used to characterize the 

surface of crystalline materials. RHEED systems gather information only from the 

surface layer of the sample.  

____________________________________________________________________________ 

1. Introduction 

The low energy electrons are absorbed before they have penetrated more than a few atomic 

layers. The LEED can be performed in a reflection mode. It can be used to determine the several 

atomic layers of a single crystal. The first electron diffraction experiment was performed by 

Davisson and Germer in 1927, and demonstrated the wave-nature of electrons. The atomically 

cleaned surfaces state of the system is essential to this experiment. The experiment can be 

performed in ultra high vacuum (p<10-8 Pa). See the detail of de Broglie wave and Davisson-

Germer experiment on the Lecture Note of Modern Physics (Phys.323): 

 

http://bingweb.binghamton.edu/~suzuki/ModernPhysics.html 
 
2. de Broglie wave length of electron 
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We consider the de Broglie wavelength of a particle m and the kinetic energy K for a 

relativistic particle. 

 

KEpcEE  0
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where E0 is the rest energy; 
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The kinetic energy K is  
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Then the momentum p is obtained as 
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Using the de Broglie relation, we have the de Broglie wavelength 
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We find that the wavelength is a scaling function of K/E0 as 
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We consider the case of electron. In this case, the above formula is  
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Note that c is the Compton wavelength for the particle and is given by 
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mc

h
c   = 2.4263102389×10−12 m. 

 

for the electron. 

 

 
 

The nonrelativistic case. 

When KE 0 ,  can be approximated by 
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3. Electron: Classical limit 

The de Broglie wavelength (relativistic) vs the kinetic energy for electron 

 

E0 = mc2, lc=hêmc
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Fig. The plot of the wavelength (classical) of electron as a function of the kinetic energy 

K(eV). 

 

In the nonrelativistic case,  
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When K = 100 eV, the wavelength is  = 1.22643 Å. When K = 100 keV, the wavelength is  = 

0.03878 Å and the wavenumber k is 162 Å-1. 
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Fig. The ratio of the radius of Ewald sphere (k = 2/) to the in-plane reciprocal lattice 

wavenumber for the graphite. 95.2
3

4


a
G


 Å-1. a = 2.46 Å (lattice constant of 

graphite layer). At K = 33.1401 eV, k/G = 1. 

 

Figure shows the plot of the ratio of the radius of Ewald sphere (k = 2/) to the reciprocal lattice 

wavenumber for the graphite (as an example), as a function of the kinetic energy of electron, K 

(eV).; 95.2
3

4


a
G


 Å-1 with a = 2.46 Å (in-plane lattice constant). This ratio k/G increases 

with increasing the kinetic energy of K. The ratio is equal to 1 when K = 33.1401 eV.  

 

4. Numerical calculation of the wave length 

E0 is the rest mass of electron and is given by 

 

E0 = mc2 = 510.999 keV = 0.510999 MeV. 

 

The wavelength of electron (relativistically) is given by 
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for the high energy limit of electron, and 
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classically (for the low energy limit), where K is the kinetic energy in the units of keV. 

 

__________________________________________ 

K (keV) classical  (Å)  icrelativist  (Å) 

0.01 3.87831  3.87828 

0.1 1.22643  1.22637 

1 0.387831  0.38764 

10 0.122643  0.122047 

100 0.0387831  0.0370144 

__________________________________________ 
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Fig. The plot of the wavelength of electron as a function of the kinetic energy K (keV). 

icrelativist (red line) is slightly shorter than classical  (blue line). 

 

 

 
 

Fig. The plot of the wavelength of electron as a function of the kinetic energy K (eV). 

classicalicrelativist   . The red and blue lines are completely overlapped. 

 

5. LEED experiment 

The LEED experiment uses a beam of electrons of a well-defined low energy (typically in the 

range 20 - 200 eV) incident normally on the sample. The sample itself must be a single crystal 

with a well-ordered surface structure in order to generate a back-scattered electron diffraction 

pattern.  
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Fig. Schematic of the experimental arrangement used to observe LEED reflections 

from the surface of a single crystal. 

 

 
 

Fig. (a) LEED diffraction pattern from a Ni (111) surface at a primary electron energy 

of K = 205 eV ( = 0.86 Å). (b) The LEED diffraction patter observed after the 

adsorption of hydrogen. The extra spots indicates the formation of a (2x2) adsorbate 

superlattice. 

(H. Ibach and H. Lűth, Solid-State Physics, 4th edition (Springer, Berlin, 2009), 

p.73. 

 
geometrical condition to be satisfied is that the surface of a sphere intersect a collection of rods, as in Fig. 

This condition is guaranteed to be satisfied at some scattering angles for any choice of incoming wave 
vector ko and for any orientation of the sample, in contrast with the bulk case. There is no need to rotate 

the sample, scan through incoming wave vectors, or use powdered 
samples in order to obtain scattering peaks. 
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Despite LEED's crucial historical role in demonstrating the wave nature of the electron, it is not easy to 

determine detailed features of surfaces based upon LEED measurements. Because electrons interact very 
strongly with solids, multiple scattering is impossible to avoid. Quantitative comparison of theory and 

experiment requires one to make detailed guesses about surface structure and then carry out lengthy 
quantum-mechanical calculations for the scattering of electrons from the surfaces, based upon the guesses. 

 

 

5. Construction of Ewald sphere (LEED): principle 

 

 
 

We now consider the Bragg reflections in the 2D system. These Bragg reflections occurs along  a 
reciprocal rod in the reciprocal lattice space. The Bragg peaks appear along the reciprocal rod, 
which is described by ( G , G//). Note that G  is the in-plane reciprocal lattice vector and G// is 

the out-of-plane wavevector. The incident electron wave (ki = k , k = 2/) is reflected by the 
surface of the 2D system. kf (= k') is the wavevector of the out-going electron wave (k' = 2/). 
The Ewald sphere is formed of the sphere with the radius of k = k'. The scattering vector Q is 
defined by 
 

kkQ  ' . 

 

O1 is the origin of the reciprocal lattice space. The 2D system is located at the point O. The 

direction normal to the surface of the system is antiparallel to the direction of the incident electron 

wave. Since the system is two-dimensional, the reciprocal lattice space is formed of Bragg rods. 

The Bragg reflections occur when the Bragg rods intersect the Ewald sphere. 
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((Note)) 

Suppose that the kinetic energy of electron K is much larger than 33 eV. The radius of the 

Ewald sphere is much larger than the separation between adjacent Bragg rods. The Bragg rods 

intercep with the nearly flat Ewald sphere. 
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Fig. Construction of the Ewald sphere for the 2D system with square lattice. The Blue 

lines are reciprocal rods. The black lines denote the direction of the reflected beams. 

The above two figures are the essentially the same. 

 

6. Ewald sphere for the graphite (LEED) 

 
 

Fig. Construction of the Ewald sphere for the 2D system with square lattice. The 

reciprocal rods intersect with the Ewald sphere, which leads to the appearance of 

the Bragg reflections. 
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Fig. Construction of the Ewald sphere for the 2D system with hexagonal lattice (view 

point is different from the above figure). 

 

7. RHEED experiment 

In RHEED, the electron beam ( is incident at a very grazing angle. In a RHEED experiment, 

with the sample viewed edge-on. In practice the display screen is usually a phosphor coating on 

the inside of a vacuum window (viewport) and the diffraction pattern can be viewed and 

recorded from the atmospheric side of the window. The small scattering angles involved are 

compensated for by using relatively large sample/screen distances. 

Ewald construction for RHEED 

 

 
 

Fig. RHEED experiment, consisting of the electron gun, sample and detector /CCD 

components of a RHEED system.  
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Electrons follow the path indicated by the arrow and approach the sample at angle θ. The sample 

surface diffracts electrons, and some of these diffracted electrons reach the detector and form the 

RHEED pattern. The reflected (specular) beam follows the path from the sample to the detector. 

RHEED is based on the reflection of electrons with high kinetic energy (typically in the 5-100 

keV) and low impact angle  (typically less than 5°) from the surface of a solid.  

 

 
Fig. Ewald construction for the RHEED experiment.  

 

In the Fig. the a-c plane of the sample is shown, where c is the axis perpendicular to the suface 

and a is one of the specified axis inside the surface. O1 is the origin of the reciprocal lattice space. 

For the 2D system, the Bragg reflections form reciprocal rod with the in-plane reciprocal lattice 

Ga. The scattering vector is given by AO1 Q = k' - k. The line R1R2 is the reciprocal rod with Ga 

= 0. This line intersects the Ewald sphere at the point A. The reciprocal rods with different Ga are 

parallel to the line R1R2. These rods (blue lines) also intersect with the Ewald sphere, satisfying 

the Bragg condition. The red lines denote the direction of the outgoing waves. The line S1S2 is 

tangential to the Ewald sphere at the point O1. When 2 is very small, the line S1S2 is almost 

parallel to the line R1R2. 

 

8. In-plane structure and reciprocal lattice of graphite and graphite intercalation 

compounds 

Here we consider the superstructures observed in the graphite intercalation compounds (GIC's). 

In alkali metal GIC, alkali metal (AM) atoms are intercalated between the adjacent graphite layers, 

forming a AM-superstructure. The in-plane structure of AM layers depends on the species of AM 
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atoms, stage number, and so on. The LEED pattern coincides with the superposition of in-

reciprocal lattice vectors of AM layers and graphite layers.  

(i) C6Ca is a stage-1 compound (showing superconductivity at low temperatures, recently 

discovered). The Ca layer form a p( 33 )R0º structure. This superstructure is 

commensurate with the graphite lattice. Ca atoms are located on the hexagon centers. 

(ii) C8K, C8Rb, and C8Cs are stage 1 compounds. These AM layers form a p( 22 )R0º, 
which is commensurate with the graphite lattice. 

(iii) C14M. There is no AM GIC having this stoichiometry. However, if it is possible, this M 

layer is expected to form a p( 77  )R19.11º, which is also commensurate with the 

graphite lattice. The M layer is rotated by 19.11º with respect to the graphite layer. 
 
 

 
 
Fig. In-plane structure of graphite layer. a1 and a2 are the primitive translation vectors. 
 

(i) p(1 x 1)R0 structure 

 

a1

a2

O
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Fig. Schematic diagram of an in-plane unit cell for the p(1 x 1)R0 structure showing 
the carbon atoms (denoted by red circles) at the corners of the hexagons and the 
intercalants as the blue circles. p denotes the primitive cell. R denotes the rotation 
between the primitive translation vectors of carbon atoms and intercalant atoms. 

 

(ii) p(2 x 2)R0 structure 

 

 
 

Fig. Schematic diagram of an in-plane unit cell for the p(2 x 2)R0 . 
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Fig. Bragg reflections arising from the graphite layer (red circles) and intercalate layer 

(blue circles). The in-plane structure of the intercalate layer is p(2 x 2)R0. 
 

(iii) p( 33 )R30 structure 

 

 
 

Fig. Schematic diagram of an in-plane unit cell for the p( 33 )R30 structure. 
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Fig. Bragg reflections arising from the graphite layer (red circles) and intercalate layer 
(blue circles) for the stoichiometry C6M. The in-plane structure of the intercalate 

layer is p( 33 )R30. q and G are the reciprocal lattice vectors of the graphite 

and intercalate layer, respectively. The rotation angle is  = 30. 
3

1


G

q
. 

 

(iv) p( 77  )R19.11 structure 

 
 

G
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q
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Fig. Schematic diagram of an in-plane unit cell for the p( 77  )R19.11 structure. 
 
 

 
 
Fig. Bragg reflections arising from the graphite layer (red circles) and intercalate layer 

(blue circles) for the stoichiometry C14M. The in-plane structure of the intercalate 

layer is p( 77  )R19.11. q and G are the reciprocal lattice vectors of the 

G

q

q
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graphite and intercalate layer, respectively. There are two kinds of domains with 

the rotation angle  = ± 19.11 for the 
7

1


G

q
. 

 

9. Example: five-fold symmetry of quasi-crystal 

 

Electron diffraction pattern of Al-Fe-Cu quasi crystal, which show clear five-fold symmetry. 

 

 
Fig. Electron diffraction pattern of quasi crystal Al-Fe-Cu (by K. Hiraga, Science 1990, 

September issue, p.54 (Japanese journal)] 

 

APPENDIX-I 

 

Wavelength of electrons as a function of the kinetic energy K (keV) 
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____________________________________________________ 

 
_____________________________________________________ 

 

KHkeVL λclassicalHAL λrelativisticHAL
0.01 3.87831 3.87828

0.02 2.74238 2.74234

0.03 2.23914 2.2391

0.04 1.93916 1.93911

0.05 1.73443 1.73439

0.06 1.58331 1.58326

0.07 1.46586 1.46581

0.08 1.37119 1.37113

0.09 1.29277 1.29271

0.1 1.22643 1.22637

KHkeVL λclassicalHAL λrelativisticHAL
0.1 1.22643 1.22637

0.2 0.867217 0.867129

0.3 0.70808 0.707973

0.4 0.613215 0.613093

0.5 0.548476 0.54834

0.6 0.500688 0.500539

0.7 0.463547 0.463387

0.8 0.433608 0.433437

0.9 0.40881 0.408629

1. 0.387831 0.38764

KHkeVL λclassicalHAL λrelativisticHAL
1 0.387831 0.38764

2 0.274238 0.273969

3 0.223914 0.223586

4 0.193916 0.193537

5 0.173443 0.17302

6 0.158331 0.157868

7 0.146586 0.146086

8 0.137119 0.136585

9 0.129277 0.128711

10 0.122643 0.122047
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_______________________________________________________ 

 
 
APPENDIX-II: Understanding of the Davisson-Germer experiment (M. Suzuki and I.S. 

Suzuki) 

https://arxiv.org/pdf/1307.6049.pdf 

 

(1). INTRODUCTION 

The observation of diffraction and interference of electron waves would provide the crucial test of the 

existence of wave nature of electrons. This observation was first seen in 1927 by C. J. Davisson and L. H. 

Germer.1 They studied electron scattering from a target consisting of a single crystal of nickel (Ni) and 

investigated this phenomenon extensively. Electrons from an electron gun are directed at a crystal and 

detected at some angle that can be varied. For a typical pattern observed, there is a strong scattering 

maximum at an angle of 50°. The angle for maximum scattering of waves from a crystal depends on the 

wavelength of the waves and the spacing of the atoms in the crystal. Using the known spacing of atoms in 

their crystal, they calculated the wavelength that could produce such a maximum and found that it agreed 

with the de Broglie equation for the electron energy they were using. By varying the energy of the incident 

KHkeVL λclassicalHAL λrelativisticHAL
10 0.122643 0.122047

20 0.0867217 0.0858851

30 0.070808 0.0697908

40 0.0613215 0.0601554

50 0.0548476 0.0535531

60 0.0500688 0.0486606

70 0.0463547 0.0448442

80 0.0433608 0.0417572

90 0.040881 0.0391916

100 0.0387831 0.0370144

KHkeVL λclassicalHAL λrelativisticHAL
100 0.0387831 0.0370144

200 0.0274238 0.0250793

300 0.0223914 0.0196875

400 0.0193916 0.0164394

500 0.0173443 0.0142126

600 0.0158331 0.012568

700 0.0146586 0.0112928

800 0.0137119 0.0102695

900 0.0129277 0.00942689

1000 0.0122643 0.00871919
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electrons, they could vary the electron wavelengths and produce maxima and minima at different locations 

in the diffraction patterns. In all cases, the measured wavelengths agreed with de Broglie’s hypothesis. 

The Davisson-Germer experiment itself is an established experiments. There is no 

controversy for them. How about the physical interpretation? One can see the description of the 

experiments and its physical interpretation in any standard textbook of the modern physics, which 

is one of the required classes for the physics majors (undergraduate). Nevertheless, students as 

well as instructors in this course may have some difficulty in understanding the underlying physics, 

since the descriptions of the experiments are different depending on textbooks and are not always 

specific. 

As far as we know, proper understanding has not been achieved fully so far. In some textbooks, 

the Ni layers are thought to act as a reflective diffraction grating. When electrons are scattered by 

the Ni (111) surface (single crystal), the electrons strongly interact with electrons inside the system. 

Thus electrons are scattered by a Ni single layer. The Ni (111) surface is just the two-dimensional 

layer for electrons. The 2D character of the scattering of electrons appears in the form of a Bragg 

rod (or Bragg ridge) in the reciprocal lattice space. In other textbooks, electrons are scattered by 

Ni layers which acts as a bulk system. The 3D character of the scattering of electrons appears in 

the form of a Bragg points in the reciprocal lattice space.13-18 The 3D Bragg reflection can occur 

when the Bragg points lie on the surface of Ewald sphere, like the x-ray diffraction. 

Here we will show that the Ni layers acts as a reflective diffraction grating. The 2D scattering 

of electrons on the Ni (111), Ni(100), and Ni(110) surfaces will be discussed in terms of the 

concept of the Bragg rod (or Bragg ridge) which intersects the surface of the Ewald sphere. We 

will show that the experimental results1-5obtained by Davisson and Germer can be well explained 

in terms of our model.  

 

(2) MODEL: EWALD SPHERE AND 2D BRAGG SCATTERING 

In 1925, Clinton Davisson and Lester .H. Germer investigated the properties of Ni metallic 

surfaces by scattering electrons. Their experiments (Davisson-Germer experiment) demonstrates 

the validity of de Broglie's postulate because it can only be explained as a constructive interference 

of waves scattered by the periodic arrangement of the atoms of the crystal. The Bragg law for the 

diffraction had been applied to the x-ray diffraction, but this was first application to the electron 

waves. 
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Fig. Constructive interference of electron waves scattered from a single layer of Ni 

atoms at an angle .  
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Fig. Ewald sphere for the Bragg reflection for the 2D system. The wavevector ki is drawn 

in the direction of the incident electron beam. Ewald sphere (radius (
rel

if kk

2

 ) is 

centered at the point O The point O1 is the origin of the reciprocal lattice vectors. 

The Bragg reflection occurs when the surface of the Ewald sphere intersects the 

Bragg rod originated from the nature of the 2D system:  = 50°. K = 54 eV. rel = 

1.66891 Å for the Ni(111) plane. The lattice constant of fcc Ni is a = 3.52 Å.  
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Fig. Ewald sphere for the two-dimensional layer with the radius 
rel

fi 
2

 kk . The red lines are 

denoted by the Bragg rods arisen from the character of the 2D system. The Bragg reflection occurs 

when the wave vector of the reflected wave is on the point (denoted by the blue points, which are 

not the Bragg points), where the Ewald sphere intersects the Bragg rod. 

 

We now consider the Bragg reflections in the 2D system. These Bragg reflections occurs along the 

reciprocal rod in the reciprocal lattice space. The Bragg peaks appear along the reciprocal rod, 

which is described by ( G , G//). Note that G  is the in-plane reciprocal lattice vector and G// is 

the out-of-plane wavevector. The incident electron wave (ki = k , k = 2/rel) is reflected by the 

surface of the 2D system. kf (= k') is the wavevector of the out-going electron wave (k' = 2/rel). 
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Here we use the notation rel as the wavelength, instead of the conventional notation . The Ewald 

sphere is formed of the sphere with the radius of k = k'. The scattering vector Q is defined by 

 

kkQ  ' . (1) 

 

O1 is the origin of the reciprocal lattice space. The 2D system is located at the point O. The 

direction normal to the surface of the system is anti-parallel to the direction of the incident electron 

wave. Since the system is two-dimensional, the reciprocal lattice space is formed of Bragg rods. 

The Bragg reflections occur when the Bragg rods intersect the Ewald sphere. 

Because of the 2D system, the Bragg points of the 3D system are changed into the Bragg rods. 

Then the Bragg condition occurs under the condition, 

 

0sin' Gk  , (2) 

 

where  

 

rel

kk

2

' . (3) 

 

The scattering angle 2 is related to the angle f as 

 

 2 . (4) 

 

In the electron diffraction experiment, we usually need to use the wavelength ( rel ), which is taken 

into account of the special relativity,7-12 

 

rel

G
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G
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2'
)2sin( 00  , (5) 

 

or 
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rel

G





2
)2sin( 0 , (6) 

 

where rel is the wavelength, 
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where h is the Plank's constant and c is the velocity of light, K (in the units of eV) is the kinetic 

energy of electron. E0 (= mc2) is the rest energy. In the non-relativistic limit, we have 

 

)(

2643.12

eVK
classical  Å. (8) 

 

in the unit of Å. When K = 54 eV,  is calculated as  = 1.66891 Å. 

Suppose that Ni (111) plane behaves like a three-dimensional system. The 3D Bragg reflection 

occurs only if the Bragg condition 

 

GkkQ  if , (9) 

 

is satisfied, where Q is the scattering vector and G is the reciprocal lattice vectors for the 3D system. 

In the experimental configuration as shown in Fig.2. G is one of the reciprocal lattice vectors for 

the fcc Ni and appears in the form of Bragg point. This Bragg point should be located on the 

surface of the Ewald sphere with radius (
rel

if kk

2

 ) centered at the point O (see Fig.2). No 

existence of such a Bragg point on the Ewald sphere indicates that the 3D Bragg scattering does 

not occur in the present situation. 

 

APPENDIX II Heisenberg’s explanation for the Davisson-Germer experiment 
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The physical meaning of the Davisson-Germer experiment was discussed by Werner 

Heisenberg in his famous book, [W. Heisenberg, The Physical Principles of the Quantum Theory, 

translated by C. Eckart and F.C. Hoyt (Dover, 1949)]. In the Germany version of this book, the 

diffraction grating is used to explain the Davisson-Germer experiment. Unfortunately, such an 

important figure is removed in the English version. 

 

 
 

The diffraction of light or matter (Davisson-Germer, Thomson, Rupp, Kikuchi) by gratings 

may be explained most simply by the aid of the classical wave theories. The application of space-

time wave theories to these experiments is justified from the point of view of the quantum theory, 

since the uncertainty relations do not in any way affect the purely geometrical aspects of the waves, 

but only their amplitude. The quantum theory needs only be invoked when discussing the 

dynamical relations involving the energy and momentum content of the waves. 

The quantum theory of the waves being thus certainly in agreement with the classical theory 

in so far as the geometric diffraction pattern is concerned, it seems useless to prove it by detailed 

calculation. On the other hand, Duane has given an interesting treatment of diffraction phenomena 

from the quantum theory of the corpuscular picture. We imagine for simplicity that the corpuscle 

is reflected from a plane ruled grating, whose constant is d. 

Let the grating itself be movable. Its translation in the x-direction may be looked upon as a 

periodic motion, in so far as only the interaction of the incident particles with the grating is 

considered; for the displacement of the whole grating by an amount d will not change this 

interaction. Thus we may conclude that the motion of the grating in this direction is quantized and 

that its momentum �� may assume only the values �ℎ/� (as follows at once from the earlier form 

of the theory: � ��� = �ℎ ). Since the total momentum of grating and particle must remain 

unchanged, the momentum of the particle can be changed only by an amount 
ℎ/� (m an integer): 

 

��
� = �� +


�

�
. 

 

Furthermore, because of its large mass, the grating cannot take up any appreciable amount of 

energy, so that 

 

��
� � + ��

� � = ��
� + ��

� = ��. 
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If  is the angle of incidence, ’ that of reflection, we have 

 

cos =
��

�
, cos′ =

���

�
, 

 

whence 

 

sin  ′ − sin  =  

�

��
. 

 

From the de Broglie relation for the wave-length of the wave associated with a particle it then 

follows that 

 

�(sin  ′ − sin ) =  

ℎ

�
= 
 

 

in agreement with the ordinary wave theory. 

 

APPENDIX-III Ewald construction for the 2D system: existence of Bragg rod 
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Fig. Ewald construction for elastic scattering on a 2D surface lattice. The Bragg 

condition is satisfied when the in-plane component of the scattering vector � =
�� − � is equal to the in-plane reciprocal lattice vector. 

 

In the 2D case, the possible elastically scattered beams (k’) can be obtained by the Ewald 

construction. The wave vector k of the incident beam is positioned with its end at the (0,0) 

reciprocal lattice point and a sphere is constructed around its starting point. As is seen from Fig, 

the condition  ! = "! is fulfilled for every point at which the sphere crosses a reciprocal lattice 

rod. 

 

APPENDIX-IV Reciprocal lattice vector of fcc plane 

Copper is a metal with the fcc structure. Suppose a Cu layer located on the surface of the single 

crystal [Cu(100) layer. Cu(110) layer, and Cu(111) layer]. The Bragg rod arising from the nature 

of the two dimensionality is formed on the reciprocal lattice plane. 

 

(a) Bragg rod for the (100) plane 

 

k'

k

G
Ga

O

Bragg rod
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(b) Bragg rod for the (111) plane  
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(c) Bragg rod for the (110) plane 
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((In summary)) 
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Fig. LEED (low energy electron diffraction) patterns from fcc crystal. The solid discs represent 

atoms in the surface of the crystal, the open circles represent reciprocal lattice points 

corresponding to these surface planes of atoms (T.D. Rymer, Electron Diffraction 

(Methuen Co Ltd, 1970). 

 

(a) Arrangement of atoms in (100) face. 

(b) Reciprocal lattice corresponding to (a) 

(c) Arrangement of atoms in (110) face. 

(d) Reciprocal lattice corresponding to (c) 
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(e) Arrangement of atoms in (111) face. 

(f) Reciprocal lattice corresponding to (e) 
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