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Walther Hermann Nernst, (25 June 1864 – 18 November 1941) was a German chemist 

who is known for his work in thermodynamics; his formulation of the Nernst heat 

theorem helped pave the way for the third law of thermodynamics, for which he won the 

1920 Nobel Prize in Chemistry. Nernst helped establish the modern field of physical 

chemistry and contributed to electrochemistry, thermodynamics and solid state physics. 

He is also known for developing the Nernst equation in 1887. 

 

 
 

https://en.wikipedia.org/wiki/Walther_Nernst 

 

1. Overview 

The third law of thermodynamics is an axiom of nature regarding entropy and the 

impossibility of reaching absolute zero of temperature (Nernst’s theorem, 1906). As a 

system approaches absolute zero temperature, all processes cease and the entropy of the 

system approaches a universal constant (that can be taken to be zero). 
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Alternative statement: It is impossible by any procedure, no matter how idealized, to 

reduce any system to the absolute zero of temperature in a finite number of operations. 



Since WkS B ln  (Boltzmann), the entropy is related to the number of microscopic 

states consistent with macroscopic states variables. Third low states that at zero 

temperature, there is only one microscopic state, i.e., the system can only occupy the 

ground state at KT 0 . In other words, 

 

1W  (the ground state, just one state), 0)1ln(  BkS  

 

which can be explained only by the combination of quantum mechanics and statistical 

mechanics (quantum statistical mechanics). 

 

2. The statement of the third law 

Nernst’s statement 

Near absolute zero, all reactions in a system in internal equilibrium take place 

with no change in entropy. 

 

Planck’s statement 

The entropy of all systems in internal equilibrium is the same at absolute zero, 

and may be taken to be zero. 

 

Simon’s statement 

The contribution to the entropy of a system by each aspect of the system which in 

in internal thermodynamic equilibrium tends to zero as 0T . 

 

3. Consequences of the third law 

(a) Heat capacity 

From the definitions of the heat capacities at constant volume and constant pressure, 

we have 
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since Tln  and 0S as 0T . 

 

The heat capacities approach zero as the temperature approaches absolute zero. With 

respect this behavior, extensive experiments provide a full confirmation of the third law. 

 

(b) Thermal expansion 

The thermal expansion is defined by 
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Using the Maxwell’s relation 
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We have 
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leading to 
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The thermal expansion approaches zero as the temperature approaches absolute zero. 

 

(c) No gas remains ideal 

For the ideal gas, the entropy S is given by 

 

VRTCS V lnln   

 

As 0T , S  

 

(d) Break down of the Curie law 

From the Maxwell’s relation 
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Suppose that the magnetization M is expressed by 
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since 0S  as 0T . 

 

((Note)) 

The occurrence of the Curie law indicates that the ground state is degenerate in the 

absence of magnetic field. As 0T , the ground state is non-degenerate. So the Curie-

law does not exist any longer. 

 

(e) Nernst’s theorem applied to solids 

We consider a solid body which is heated (at constant pressure, for example) until its 

temperature increases from the absolute zero to a certain value T. Let )(TC  be its heat 

capacity (at constant pressure) when its temperature is T. Then, if the temperature 

changes by an amount dT, the system will absorb an amount of heat dTTCdQ )( . The 

entropy of the system at the temperature T is therefore given by 
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We can obtain the first consequence of the Nernst’s theorem from Eq.(1). We observe 

that if the heat capacity, C(0), at absolute zero were different from zero, the integral (1) 

would diverge at the lower limit. We must therefor have 
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This result is in agreement with the experiments on the specific heat of solids. 

 

4. Explanation based on quantum mechanics 

According to the quantum mechanics, the system is in a lowest state (non-degenerate 

state) so called the ground state. Mathematically, the absolute entropy of any system at 

zero temperature is defined by 



 

0ln BkS  

 

where 0  is the number of ground state. When 10   as 0T , the entropy 0S . 

The entropy tends to zero as the temperature approaches zero.  

 

((Landau and Lifshitz)) 

At absolute zero, any part of the body must be in a particular quantum state, the 

ground state. In other words, the statistical weights of these parts are equal to unity, and 

therefore so is their product, i.e, the statistical weight of the macroscopic state of the body 

as a whole. The entropy of the body, being the logarithm of its statistical weight, is 

therefore zero. We consequently reach the important result that the entropy of any body 

vanishes at the absolute zero of temperature. This is called Nernst’s theorem (W. Nernst, 

1906). 

It should be emphasized that this theorem is a deduction from quantum statistics, in 

which the concept of discrete quantum states is of essential importance. The theorem 

cannot be proved in purely classical statistics, where the entropy is determined only to 

within an arbitrary additive constant. 

 

5. Adiabatic demagnetization for spin 1/2 system 

Each electron spin has a magnetic moment (B). Note that the direction of spin is antiparallel 

to that of magnetic moment. There are two spin states which are denoted by the spin state ↓ for 

positive magnetic moment and by the spin state ↑ for negative magnetic moment. In the presence 

of an applied magnetic field along the z axis, the two orientations of magnetic moments have 

different energies, and the Boltzmann distribution can be used to calculate the small difference in 

populations for a given temperature. At higher temperature there will be slightly lower energy ↓ 

spins than higher energy ↑ spins. If somehow we could contrive to convert some of the ↑ into ↓ 

spins, then the population difference will correspond to a lower temperature, and we shall 

have cooled the sample. If we could contrive to make all the spins ↓, then we shall have 

reached absolute zero. We shall represent the sample at room temperature and in the 

absence of a magnetic field by . . .↑↓↓↑↓↓↓↑↑↓↑ . . .with a random distribution of ↓ and ↑ 

spins. These spins are in thermal contact with the rest of the material in the sample and 

share the same temperature. 

Now we increase the magnetic field with the sample in thermal contact with its 

surroundings. Because the sample can give up energy to its surroundings, the electron 

spin populations can adjust. The sample becomes . . .↓↓↑↓↑↑↓↓↓↑↓ . . .with a small 

preponderance of ↓ spins over ↑ spins. The spin arrangement contributes to the entropy, 

and so we can conclude that, because the spin distribution is less random than it was 

initially (because we can be more confident about getting a ↓ in a blind selection), the 

entropy of the sample has been reduced (Fig.). That is, by turning up the magnetic field 

and allowing energy to escape as the electron spins realign, we lower the entropy of the 

sample. Now consider what happens when we isolate the sample thermally from its 



surroundings and gradually reduce the applied field to zero. A process that occurs without 

the transfer of energy as heat is called adiabatic, so this step is the ‘adiabatic 

demagnetization’ step that gives the process its name. Because the process is adiabatic 

the entropy of the entire sample (the spins and their immediate surroundings) remains the 

same. The electron spins no longer have a magnetic field to align against, so they resume 

their original higher entropy random arrangement like . . .↓↓↑↓↑↑↓↓↓↑↓ . . . .However, 

because there is no change in the overall entropy of the sample, the entropy of the 

molecules that carry the electrons must be lowered, which corresponds to a lowering of 

temperature. Isothermal magnetization followed by adiabatic demagnetization has cooled 

the sample (originally from Atkins) 

 

 
 

Fig.  The process of adiabatic demagnetization for reaching low temperatures. The 

arrows depict the spin alignment of the electrons in the sample. The first step (M) 

is isothermal magnetization, which increases the alignment of the spins, the 

second step (D) is adiabatic demagnetization, which preserves the entropy and 

therefore corresponds to a lowering of temperature. If the two curves did not meet 

at T = 0, it would be possible to lower the temperature to zero (as shown on the 

left). That a finite sequence of cycles does not bring the temperature to zero (as 

shown on the right) implies that the curves meet at T = 0 (Atkins) 

 

Next, we repeat the process. We magnetize the newly cooled sample isothermally, 

isolate it thermally, and reduce the field adiabatically. This cycle lowers the temperature 

of the sample a little more. In principle, we can repeat this cyclic process, and gradually 

cool the sample to any desired temperature. At this point, however, the wolf inside the 



third law hurls off its sheep’s clothing. If the entropy of the substance with and without 

the magnetic field turned on were to be like that shown in the left-hand half of Figure, 

then we could select a series of cyclic changes that would bring the sample to T = 0 in a 

finite series of steps. It has not proved possible to achieve absolute zero in this way. The 

implication is that the entropy does not behave as shown on the left, but must be like that 

shown on the right of the illustration, with the two curves coinciding at T = 0. 

 

6. Construction of the zig-zag path in the entropy vs temperature diagram 

We use the entropy for the spin 1/2, 
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or simplicity we use the form 

 

)tanh()]cosh(2ln[

)tanh()]cosh(2ln[)(

t

b

t

b

t

b

Tk

B

Tk

B

Tk

B

b

t
f

B

B

B

B

B

B






 

 

We make a plot of )(
b

t
f  as a function of t, where we choose two values of b; one is b = 1 

and the other value of  b (= 3, 1.5,  1.2). We define the points in the )/( btf  versus t for 

b= 1 and for b. 

 

)}
1

(,
1

{)}
1

1

(,
1

{
nn

n

nn
b

f
b

t
b

b
t

f
b

t 



a , 

 

)}
1

(,
1

{)}

1

(,
1

{
1




nn

n

nn
b

f
b

t
b

b
t

f
b

tb  

 

)}
1

(,
1

{)}
1

1

(,
1

{
11

1

11 



 





nn

n

nn
b

f
b

t
b

b
t

f
b

ta  

 



Path }{ nn ba  : isothermal process (the magnetic field decreases from b = 1 to b) which 

corresponds to the vertical line. 

Path }{ 1 nn ab : isentropic process (the magnetic field decreases from b to b =1) which 

corresponds to the horizontal line. The zig-zag path can be obtained by repeating these 

two processes staring form the point )}1(,1{)}
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(a) b = 3 

 

 
 

(b) b = 1.5 
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(c) b = 1.2 

 

 
 

We also make a probability nP1   as a function of t for b = 1.2, where 

 

nb
t

1
 , )tanh(11 1 n

n bP  

 

0.10 0.50 1

10
11

10
7

10
3

0.10 0.50 1

10
12

10
9

10
6

0.001

1



As the temperature t decreases, the probability P approaches very close to unity. This 

means that the system is nearly in the ground state with   

 

 
 

7. Physical meaning of the zig-zag path  

A series of isothermal and adiabatic processes (demagnetizations) are represented by 

the zig-zag path. Each successive process reduces the temperature. It is clear, however, 

that because the curves intersect at T = 0, an infinite number of steps would be required 

of absolute zero by any practical method. 

 
 

A1:  Stating point. )1,1(  btf  
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A1B1: Isothermal process (the increase of magnetic field from b = 1 to b) at t = 1. 

B1 A2: Adiabatic demagnetization (isentropic, the decrease of magnetic field from 

b to b = 1). The temperature decreases from 1t  to bt /1 . 

A2B2: Isothermal process (the increase of magnetic field from b = 1 to b) at 

bt /1  

B2 A3: Adiabatic demagnetization (isentropic, the decrease of magnetic field from 

b to b = 1). The temperature decreases from bt /1  to 2/1 bt  . 

A3B3: Isothermal process (the increase of magnetic field from b = 1 to b) at 
2/1 bt   

 

Fig. Entropy vs temperature for a cooling process. The unattainability of 

absolute zero is illustrated by the indefinitely increasing number of staps 

required to achieve a given temperature reduction as absolute zero is 

approached. 
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 in the limit of 0t  for two energy levels. 

Noting that 1/ tbe  and 1/  tbe , we can approximate the expression of entropy as 
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where we use the approximation 
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In the limit of 0t , we have 
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