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Abstract – Effective congestion control is one of the most critical 

issues in the utility efficiency of network resources. Because of 

better scalability and higher flexibility, CUBIC has become a 

widely deployed TCP congestion control protocol in high-speed 

long-delay networks and it is the current default algorithm 

implemented in the Linux kernel. However, the behavior of 

CUBIC is not fully understood. In this paper, a deterministic 

loss model has been proposed to analyze the characteristics of 

the concave region in the congestion avoidance state. This paper 

aims to provide deeper insight on the function and mechanism 

of CUBIC protocol. Through extensive mathematical analysis 

and simulation experimental study, this work verified that the 

CUBIC protocol effectively improved the bandwidth utility 

efficiency in high-speed long-delay networks. 
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1. Introduction 

High-speed long-delay networks, also known as long fat 

networks, are characterized by a high bandwidth-delay 

product (BDP). BDP is the maximum amount of data that a 

sender can send into the network before any 

acknowledgement comes back from a receiver. It is also used 

to evaluate the efficiency of bandwidth utility. Ideally, to 

achieve a 100% resource utility efficiency, the BDP tells the 

amount of data that a sender should keep within the network. 

However, in practice, network links are underutilized 

and a lot of efforts have been reported to improve the 

efficiency. One of the obstacles that prevent the senders from 

injecting more data packets into the network is the limited 

capabilities of congestion control protocols. In order to avoid 

congestions that lead to packet dropping and re-transmission, 

senders are requested to start with small window size and 

increase either additively or multiplicatively, behaving as 

specified by such as additive-increase multiplicative-

decrease (AIMD) or multiplicative-increase multiplicative-

decrease (MIMD) model. 

Congestion control protocols (either AIMD, MIMD, or 

other derived protocols such as NewReno [1], [2], HTCP [3], 

HSTCP [4], STCP [5]) reduce the sending window size 

drastically when packet dropping happens. Consequently, the 

network throughput is also cut down significantly, and the 

link remains underutilized for a period of time. After the 

window size cutting, recovery and congestion avoidance are 

carried out by each protocol striving to occupy the link fully. 

Additionally, protocols generally also set a threshold of 

impending loss region.  

To achieve better link utilization, researchers have 

proposed enhanced congestion control mechanisms such as 

FAST [6], Vegas [7], Westwood [8], BIC [9], and CUBIC 

[10]. Among them, CUBIC has been widely deployed in 

high-speed long-delay networks because of its better 

scalability and higher flexibility. CUBIC is adopted by about 

45% of GNU/Linux servers [11], and currently it is the 

default algorithm implemented in the Linux kernel [12], [13].  

The stability of CUBIC lies in the fact that the flow has 

a slow growth near the threshold’s neighborhood, between 

the concave and convex regions. CUBIC also has a low 

multiplicative decrease parameter in comparison with other 

congestion control protocols. Meanwhile, CUBIC protocol 

possesses two important features. First, it follows a cubic 

growth function, and second, it was designed with a TCP-

friendly region. 

Although CUBIC has been accepted widely and its 

operation has impacted the performance of WANs [14], its 

behavior is not fully understood yet. While some researchers 

have tried to study the behavior of CUBIC through intensive 

experiments, it is still desired to analyze this protocol in a 

more precise and stricter way, mathematically. 

In this paper, we present an analytical model of CUBIC, 

particularly focusing on the concave region. Considering the 

window growth process as a random process, this model is 

derived using Markov chain. In addition, the window size, 

the round-trip time, and the number of packets before packet 

dropping happens are considered as variables involved in the 

Markov chain’s states. Through extensive simulation 

experiments we have verified our model. 

The remainder of this paper is organized as follows. 

Section 2 presents a brief review of related studies on 

CUBIC. Section 3 describes the principle and operation of 

the CUBIC window adjustment algorithm, including 

discussions about both its growth function and its 

parameters. In Section 4, a deterministic loss model is 

derived. Section 5 analyzes the mechanism of fast 

convergence. Section 6 presents the results of the simulation 

experiments. Section 7 wraps up this paper with some 

discussion and conclusions. 

2. Related Work 

There are a lot of reported efforts in Internet congestion 

control or congestion avoidance mechanisms. This section 

presents a brief overview on studies that are closely related to 

CUBIC. Readers who are interested in this area are referred 

to more comprehensive surveys such as [15], [16].  

Leith et al. presented some experimental results for 

CUBIC [17]. The topology employed was dumbbell 

topology. They tested some features of CUBIC, such as its 

slow convergence and RTT fairness. However, some 

information and conclusions presented had led to a rebuttal 



by Rhee, one of the designers of CUBIC [18]. In [19], 

Bateman et al. provided comprehensive comparison study 

through results obtained from both simulation and testbed 

emulation experiments. The behavior and performance of 

CUBIC have been compared with multiple congestion 

control schemes, such as TCP Reno with BIC, Scalable, 

HighSpeed, and Hamilton.  

Using FTP traffic traces, an analysis of performance 

under multiple scenarios is presented in [20]. The authors 

used ns-2 and compared the performance of CUBIC with 

different TCP algorithms such as TCP Reno, HSTCP, STCP, 

and Compound TCP.  

In [21], an experimental evaluation of TCP CUBIC was 

conducted. The implementation was on top of NetFPGA 

board with small buffer setup. The authors’ motivation was 

to project future network which might possess large capacity 

and small buffers. Recently, Bao et al. reported a slightly 

different point of view from the above mentioned papers, 

modeling CUBIC over wireless networks [22]. The authors 

derived a Markov chain model for performance analysis over 

wireless networks such as 3GPP, LTE, and WiMAX.  

The aforementioned papers presented some performance 

results. They did not provide more strict analysis or an 

analytical model, except for [22]. However, the work 

reported in [22] was conducted in the context of wireless 

networks. In this paper, our model focuses on wired, long fat 

network environments.  

3. CUBIC Congestion Control 

This section presents a brief introduction to the CUBIC 

scheme. Basically, CUBIC employs ACK-clocking to adjust 

its window size [10], it does not change the fast recovery and 

fast retransmission algorithm adopted by TCP NewReno [2] 

and TCP SACK [23]. The window growth rate function of 

CUBIC is shown in Figure 1, which displays the cubic 

function curve and its inflection point in Wmax (vertical axis). 

In case there is packet dropping event when the 

congestion window size is Wmax, CUBIC starts work. It sets 

Wmax as the maximum window size. Then, CUBIC decreases 

the congestion window size multiplicatively with a rate . 

After that, CUBIC enters the congestion avoidance phase, in 

which its window growth procedure can be divided into three 

regions, considering Wmax as reference value [10]. 

CUBIC is allowed to maintain a slow growth near the 

last maximum value, where packet dropping has occurred. 

The window adjustment function of CUBIC is [10]: 
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where C is a constant that determines the window 

growth rate (aggressiveness) in high BDP networks, t is the 

elapsed time from the last packet dropping, and K is the 

estimated time period that would take to reach Wmax. 

Disregarding further packet loss, K is computed as follows: 
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3.1 Regions 

Let cwnd and WTCP(t) be the current congestion window 

size and standard TCP window size in a certain time, 

respectively. WTCP(t) is defined by standard TCP window 

growth function. Then, CUBIC is within the TCP-friendly 

region if cwnd < WTCP(t). Thus, cwnd is set to WTCP(t) upon 

receiving each ACK.  

If CUBIC is not in the TCP-friendly region and cwnd > 

WTCP(t), then, the protocol is in the concave region. In this 

region, cwnd increases following Eq. (1) until Wmax is 

reached. Once cwnd ≥ Wmax, the protocol is in the convex 

region. The window growth function remains the same for 

both concave and convex regions. As aforementioned, the 

growth rate is slow at the beginning near the Wmax 

neighborhood. 

3.2 Fast Convergence 

CUBIC introduces a heuristic into the protocol to 

improve convergence rate. This heuristic allows existing 

CUBIC flows to release (share) bandwidth to incoming 

flows. With this released bandwidth, incoming flows have 

room to grow. If the fast convergence mechanism is enabled, 

when a packet loss event occurs, the algorithm compares the 

previous Wmax with the current Wmax. If the current Wmax is 

less than the previous Wmax, then it indicates that there are 

fewer available resources in the link. The algorithm below 

explains the heuristic: 

 if (W_max < W_last_max){ 

  W_last_max = W_max; 

  W_max = W_max*(2-)/2; 

 } else 

  W_last_max = W_max; 

Here, W_max (integer) is the current maximum window 

size, W_last_max (integer) is the last maximum value 

registered, and is the multiplicative decrease factor. 

4. Deterministic Loss Model 

Assume the packet loss probability is p and the packet 

losses are random and independent to each other. In addition, 

consider a long-lived CUBIC flow that operates in the 

concave region of the congestion avoidance phase. To make 

our mathematics easier, the model is simplified by  
Figure 1. CUBIC window growth function. 



considering its performance in the concave region, and by 

using the variables’ expected value. The window growth 

process is considered as a Markov chain. 

Suppose the initial window size is w, three metrics are 

defined as follows: 

W(r, w): the window size after r packets are 

acknowledged; 

T(r, w): the time taken by r packets to be sent and 

acknowledged; 

Rmax(w): the number of packets acknowledged before a 

packet loss happens. 

Also, assume that packet loss happens due to buffer 

overflow or other damaging phenomenon that prevents the 

receiver from acknowledging a received packet correctly. 

Furthermore, let us assume only one packet loss occurs at 

one time, and the congestion control protocol takes action for 

that packet loss event.  

Let us define q=1–p as the probability that a packet is 

acknowledged successfully. Assume the probability of the 

number of packets lost follows a geometric law. Considering 

that (r–1) packets (≤ Rmax) have been acknowledged, let us 

define the probability mass function for R, such that R is an 

independent and identically distributed random variable 

(i.i.d.) for the number of packets. Thus, 

pprRP r 1)1(][   (3) 

where 1,,2,1  maxRr  . 

The period of a cycle is T(R, w), and the window size 

when the cycle ends is W(R, w).  

Considering a time-homogeneous Markov chain 

consisting of the states {wn}, where n is the index for each 

RTT. Let us define the evolution of wn and Tn: 

),(1 nnn wRWw   (4) 
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Eqs (3), (4), and (5) define the transition probabilities for 

the Markov chain. W(r, w) and T(r, w) are i.i.d. random 

variables. The distribution of T(r, w) has an expected value 

E[T]. Thus, the throughput x is calculated considering the 

expected values of the random variables R and T: 
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CUBIC does not depend on RTT, but continuous time 

that would take to increase w=(1–) up to Wmax=. 

Furthermore, the average period is K, knowing that when w 

reaches Wmax=, it goes from the state wi to the state wi+1, 

and then, the cycle starts at w=(1–) again after 

Rmax+1=Ri+1=1/p packets: 
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Thus, it gives: 
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Considering that the growth rate function is subject to 

the packet loss frequency, the following expression may be 

derived: E[T]=K. The expected value of packets sent is: 

  ][][ rRrPRE  (9) 

As the number of packets sent before a packet loss event 

is already established, and assuming that a single packet is 

lost in each cycle of the growth rate function, it yields 

1/p=E[R]. According to Eq. (1), we may write the protocol 

dynamics in each RTT with the following growth function: 
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Thus far, it is known the period of each cycle and the 

fact that the protocol works only in the concave region of the 

congestion avoidance state. Therefore, the amount of 

transmitted packets in each cycle is: 

 RTT

K
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The Eq. (11) calculates the number of packets per cycle. 

As it is shown above, the growth function has been modified. 

It depends on RTT, and the reference time unit is RTT as 

well. This modification does not affect main further 

calculations. For the default value of the protocol, = 0.2; 

Figure 2 displays the curve plotted according Eq. (10). 

 

Figure 2. CUBIC window growth function  

under periodic loss events. 
The expected window size is equal to the amount of 

packets transmitted during an elapsed time (taking RTT as 

the time unit) until a packet loss event occurs. Thus, the 

following expression is obtained: 
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Solving Eq. (12), the expression of the average window 

size is calculated: 
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Additionally, consider that packets travel on an available 

link for each flow and arrive to a queue as a Poisson process 

with a mean throughput x. This parameter x depends on Eq. 

(13). Therefore, 

RTT
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x
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5. Analysis of Fast Convergence  

The fast convergence mechanism, as indicated in 

Section 3.2, adds heuristic in the protocol. In turn, fast 

convergence provides room for incoming flows into the 

network. Likewise, it is considered that all conditions are met 

to run the mechanism of fast convergence. 

However, the bandwidth release has a time limit. When 

a flow suffers a packet loss event, it might be operating in 

two modes: under fast convergence or not under fast 

convergence. Then, after an elapsed time, the flow will reach 

a threshold where the window sizes of both modes are the 

same. Beyond this threshold, the growth rate of the flow that 

works under fast convergence becomes more aggressive than 

the same flow if it had not used fast convergence. 

Consider K1 and K2 as estimated time periods using fast 

convergence mode and not using it, respectively. 1 and 2 

are the reference maximum window sizes of the cubic 

functions using fast convergence mode and not using it, 

respectively. Thus, the time threshold may be calculated, 

knowing that at that point, the window sizes are equal: 
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Solving Eq. (15) gives the elapsed time to reach the 

threshold, and in turn, we can obtain the time limit of fast 

convergence. In this fashion, 
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The Eq. (16) has the following unique solution: 

a
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The above result may be negligible if a packet loss event 

occurs or the data transmission concludes before the time 

limit of fast convergence. Therefore, Eq. (18) is considered 

as the time limit tlim, or duration of fast convergence. 

6. Validation 

This section validates the results of the analysis in the 

previous sections. The mathematical analysis in previous 

sections allows obtaining theoretical results and 

understanding the characteristics of CUBIC. 

6.1 Behavior of CUBIC 

To analyze the influence of the periodic probability as 

shown by Eq. (13), two scenarios are considered. Figure 3 

compares the evolution of the average window size against 

loss rate of CUBIC, TCP Reno, and Scalable TCP. Figure 

3(a) presents the average window size of a flow over a link 

with RTT=10 ms. Figure 3(b) displays the behavior of a flow 

over a link with RTT=100 ms. As shown in Figure 3(b), the 

mean window size of CUBIC has less aggressive evolution 

than STCP and TCP Reno. The first one is considerably 

aggressive, whereas the second one has a more cautious 

growth, but still amply aggressive.  

 

(a) RTT=10 ms.                          (b) RTT=100 ms. 

Figure 3. Validation of Eq. (13), with different RTT values. 

Figure 3(b) shows a better performance of CUBIC, 

which has a more aggressive growth in high-delay networks, 

STCP is even more aggressive, but with less performance 

than in low-delay networks. Furthermore, TCP Reno has the 

poorest performance in high BDP networks, with high delay. 

This easily demonstrates the lack of fairness of both STCP 

and TCP Reno flows on high-delay links. 

The parameter C is a constant defined by CUBIC and 

denotes the window growth rate aggressiveness [10]. We 

compared the network response against different values of C. 

Figure 4 displays a better performance for CUBIC in high-

delay networks when RTT=10 ms and 100ms respectively.  

     

(a) RTT=10 ms.                            (b) RTT=100 ms. 

Figure 4. Impact of parameter C. 

Figure 5 illustrates the relationship between the 

parameters K and C through different values of packet loss 



rates p. The chosen delay is RTT= 100 ms., because it is the 

network scenario where CUBIC has an improved 

performance as congestion control protocol. For example, 

when p=10
-8

 and C=0.04 gives approximately K=99 s., which 

is the estimated time to reach Wmax without considering 

further packet loss events. Likewise, for p=10
-8

 and C=0.4, 

which is the default value of CUBIC, around K=55 s. is 

obtained. Additionally, for a constant value of C, it is shown 

that the degree of aggressiveness in window size growth rate 

is reflected in a smaller value of the estimated time K. 

 

Figure 5. Relationship between C, p and K, RTT=100 ms. 

6.2 Case study: fast convergence 

The validations in this section are performed based on 

the time interval t, where t =[0; tlim]. This interval denotes 

the duration of fast convergence. Figure 6 displays the 

available room (in number of packets) versus the duration 

interval of fast convergence. Available room refers to as 

available bandwidth shared within the duration of fast 

convergence so that incoming flows may occupy them, and 

in turn, be able to grow. As a result, the flows on the link 

obtain a fairer bandwidth allocation. 

    
       Figure 6. Available room           Figure 7. Available room  

                  within t.                          within t in relation to Wmax. 

As explained in Section 4, the time limit or duration of 

fast convergence will be completed if it is assumed no further 

loss event before this period. Figure 7 displays the available 

room (in number of packets) versus the maximum window 

size of the last loss event Wmax. This provides us a better 

appreciation of available packets to be taken by other flows 

from the point of view of the giving flow (and its maximum 

window size), whose bandwidth or available packet space 

will be available to incoming flows. As discussed earlier, the 

heuristic added in the congestion control mechanism detects 

an incoming flow through comparing the current maximum 

window size with the last one registered. 

6.3. Utilization 

The link utilization is an important metric in high-speed 

networks. This section reports our simulation results 

obtained using ns-2 [24]. The experiments are performed 

over dedicated links of 150 Mbps for each protocol. The 

Figure 8 considers the propagation delay of 20 ms, which is a 

network scenario with low BDP. 

The performance of CUBIC is compared with TCP 

Reno. As shown in Figure 9, there are periodical packet loss 

events for both flows. Our simulation experimental results 

verified that both CUBIC and TCP Reno have a link 

utilization close to ideal with a network scenario favorable to 

TCP Reno. The average utilization of the CUBIC flow is of 

95.1%, and for the TCP Reno flow is equal to 94.9%. 

In the case of a high BDP network environment, the 

dedicated link capacity of 150 Mbps is reserved, and the 

propagation delay is considered equal to 380 ms. For the 

CUBIC flow, periodic loss events are plotted in Figure 9(a). 

However, for the TCP Reno flow, Figure 9(b) shows a 

continuous growth of the window size. 

     

(a) Window size of CUBIC.         (b) Window size of TCP Reno. 

Figure 8. Comparison of window sizes. 

 

       (a) Window size, CUBIC.      (b) Window size, TCP Reno. 

Figure 9. Comparison of window sizes. 

  

(a) Throughput of CUBIC.     (b) Throughput of TCP Reno. 

Figure 10. Comparison of throughput. 
The case where high BDP is presented, the network 

environment is favorable to CUBIC. As shown in Figure 10, 



the CUBIC throughput achieves higher link utilization than 

TCP Reno. CUBIC has an average link utilization of 83.5% 

in comparison with TCP Reno with 18.5%. Therefore, TCP 

Reno shows a high degree of link underutilization in 

comparison with CUBIC. 

7. Discussions and Conclusions 

In this paper, CUBIC congestion control protocol, which 

is a loss based protocol, has been analyzed. Considering 

packet loss rate, the CUBIC deterministic model that was 

developed allows us study its window adjustment features. 

An analysis of the fast convergence heuristic embedded in 

the CUBIC congestion control algorithm is presented, which 

verified that CUBIC improves the bandwidth distribution 

fairness, considering that shared room will be taken by 

incoming flows. 

Our numerical analysis results also validated that 

CUBIC performance in steady state improves in high RTT 

networks. Furthermore, we have analyzed link utilization and 

compared the dynamics of CUBIC and TCP Reno through 

simulation experiments using network simulator ns-2. Both 

algorithms are loss based protocols. The simulations showed 

that the dynamic performance of CUBIC is better than TCP 

Reno in high RTT networks; hence, there is better bandwidth 

utilization in high RTT networks by CUBIC. 

At present, CUBIC is still a protocol under development. 

There is a need for more evaluation studies of this nature. For 

the sake of simplicity, in this paper we assumed that packet 

losses are not correlated. However, by its nature, the Internet 

traffic is bursty on different time scales [25], [26]. Some 

changes are needed to make our model accommodate this 

property.  

Our ongoing efforts also include an extension of this 

work, which is conducted in order to develop stochastic 

models of CUBIC based on random losses. Additionally, 

studies addressing the performance of CUBIC in wireless 

networks have yet to be conducted. 
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