
A Deterministic Loss Model Based Analysis of CUBIC

Rodolfo I. Ledesma Goyzueta, Yu Chen

Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902

Email: {rledesm1, ychen}@binghamton.edu

Abstract – Effective congestion control is one of the most critical

issues in the utility efficiency of network resources. Because of

better scalability and higher flexibility, CUBIC has become a

widely deployed TCP congestion control protocol in high-speed

long-delay networks and it is the current default algorithm

implemented in the Linux kernel. However, the behavior of

CUBIC is not fully understood. In this paper, a deterministic

loss model has been proposed to analyze the characteristics of

the concave region in the congestion avoidance state. This paper

aims to provide deeper insight on the function and mechanism

of CUBIC protocol. Through extensive mathematical analysis

and simulation experimental study, this work verified that the

CUBIC protocol effectively improved the bandwidth utility

efficiency in high-speed long-delay networks.

Keywords: CUBIC, TCP, congestion control, Markov chain.

1. Introduction

High-speed long-delay networks, also known as long fat

networks, are characterized by a high bandwidth-delay

product (BDP). BDP is the maximum amount of data that a

sender can send into the network before any

acknowledgement comes back from a receiver. It is also used

to evaluate the efficiency of bandwidth utility. Ideally, to

achieve a 100% resource utility efficiency, the BDP tells the

amount of data that a sender should keep within the network.

However, in practice, network links are underutilized

and a lot of efforts have been reported to improve the

efficiency. One of the obstacles that prevent the senders from

injecting more data packets into the network is the limited

capabilities of congestion control protocols. In order to avoid

congestions that lead to packet dropping and re-transmission,

senders are requested to start with small window size and

increase either additively or multiplicatively, behaving as

specified by such as additive-increase multiplicative-

decrease (AIMD) or multiplicative-increase multiplicative-

decrease (MIMD) model.

Congestion control protocols (either AIMD, MIMD, or

other derived protocols such as NewReno [1], [2], HTCP [3],

HSTCP [4], STCP [5]) reduce the sending window size

drastically when packet dropping happens. Consequently, the

network throughput is also cut down significantly, and the

link remains underutilized for a period of time. After the

window size cutting, recovery and congestion avoidance are

carried out by each protocol striving to occupy the link fully.

Additionally, protocols generally also set a threshold of

impending loss region.

To achieve better link utilization, researchers have

proposed enhanced congestion control mechanisms such as

FAST [6], Vegas [7], Westwood [8], BIC [9], and CUBIC

[10]. Among them, CUBIC has been widely deployed in

high-speed long-delay networks because of its better

scalability and higher flexibility. CUBIC is adopted by about

45% of GNU/Linux servers [11], and currently it is the

default algorithm implemented in the Linux kernel [12], [13].

The stability of CUBIC lies in the fact that the flow has

a slow growth near the threshold’s neighborhood, between

the concave and convex regions. CUBIC also has a low

multiplicative decrease parameter in comparison with other

congestion control protocols. Meanwhile, CUBIC protocol

possesses two important features. First, it follows a cubic

growth function, and second, it was designed with a TCP-

friendly region.

Although CUBIC has been accepted widely and its

operation has impacted the performance of WANs [14], its

behavior is not fully understood yet. While some researchers

have tried to study the behavior of CUBIC through intensive

experiments, it is still desired to analyze this protocol in a

more precise and stricter way, mathematically.

In this paper, we present an analytical model of CUBIC,

particularly focusing on the concave region. Considering the

window growth process as a random process, this model is

derived using Markov chain. In addition, the window size,

the round-trip time, and the number of packets before packet

dropping happens are considered as variables involved in the

Markov chain’s states. Through extensive simulation

experiments we have verified our model.

The remainder of this paper is organized as follows.

Section 2 presents a brief review of related studies on

CUBIC. Section 3 describes the principle and operation of

the CUBIC window adjustment algorithm, including

discussions about both its growth function and its

parameters. In Section 4, a deterministic loss model is

derived. Section 5 analyzes the mechanism of fast

convergence. Section 6 presents the results of the simulation

experiments. Section 7 wraps up this paper with some

discussion and conclusions.

2. Related Work

There are a lot of reported efforts in Internet congestion

control or congestion avoidance mechanisms. This section

presents a brief overview on studies that are closely related to

CUBIC. Readers who are interested in this area are referred

to more comprehensive surveys such as [15], [16].

Leith et al. presented some experimental results for

CUBIC [17]. The topology employed was dumbbell

topology. They tested some features of CUBIC, such as its

slow convergence and RTT fairness. However, some

information and conclusions presented had led to a rebuttal

by Rhee, one of the designers of CUBIC [18]. In [19],

Bateman et al. provided comprehensive comparison study

through results obtained from both simulation and testbed

emulation experiments. The behavior and performance of

CUBIC have been compared with multiple congestion

control schemes, such as TCP Reno with BIC, Scalable,

HighSpeed, and Hamilton.

Using FTP traffic traces, an analysis of performance

under multiple scenarios is presented in [20]. The authors

used ns-2 and compared the performance of CUBIC with

different TCP algorithms such as TCP Reno, HSTCP, STCP,

and Compound TCP.

In [21], an experimental evaluation of TCP CUBIC was

conducted. The implementation was on top of NetFPGA

board with small buffer setup. The authors’ motivation was

to project future network which might possess large capacity

and small buffers. Recently, Bao et al. reported a slightly

different point of view from the above mentioned papers,

modeling CUBIC over wireless networks [22]. The authors

derived a Markov chain model for performance analysis over

wireless networks such as 3GPP, LTE, and WiMAX.

The aforementioned papers presented some performance

results. They did not provide more strict analysis or an

analytical model, except for [22]. However, the work

reported in [22] was conducted in the context of wireless

networks. In this paper, our model focuses on wired, long fat

network environments.

3. CUBIC Congestion Control

This section presents a brief introduction to the CUBIC

scheme. Basically, CUBIC employs ACK-clocking to adjust

its window size [10], it does not change the fast recovery and

fast retransmission algorithm adopted by TCP NewReno [2]

and TCP SACK [23]. The window growth rate function of

CUBIC is shown in Figure 1, which displays the cubic

function curve and its inflection point in Wmax (vertical axis).

In case there is packet dropping event when the

congestion window size is Wmax, CUBIC starts work. It sets

Wmax as the maximum window size. Then, CUBIC decreases

the congestion window size multiplicatively with a rate .

After that, CUBIC enters the congestion avoidance phase, in

which its window growth procedure can be divided into three

regions, considering Wmax as reference value [10].

CUBIC is allowed to maintain a slow growth near the

last maximum value, where packet dropping has occurred.

The window adjustment function of CUBIC is [10]:

max

3)()(WKtCtW  (1)

where C is a constant that determines the window

growth rate (aggressiveness) in high BDP networks, t is the

elapsed time from the last packet dropping, and K is the

estimated time period that would take to reach Wmax.

Disregarding further packet loss, K is computed as follows:

3 max

C

W
K


 (2)

3.1 Regions

Let cwnd and WTCP(t) be the current congestion window

size and standard TCP window size in a certain time,

respectively. WTCP(t) is defined by standard TCP window

growth function. Then, CUBIC is within the TCP-friendly

region if cwnd < WTCP(t). Thus, cwnd is set to WTCP(t) upon

receiving each ACK.

If CUBIC is not in the TCP-friendly region and cwnd >

WTCP(t), then, the protocol is in the concave region. In this

region, cwnd increases following Eq. (1) until Wmax is

reached. Once cwnd ≥ Wmax, the protocol is in the convex

region. The window growth function remains the same for

both concave and convex regions. As aforementioned, the

growth rate is slow at the beginning near the Wmax

neighborhood.

3.2 Fast Convergence

CUBIC introduces a heuristic into the protocol to

improve convergence rate. This heuristic allows existing

CUBIC flows to release (share) bandwidth to incoming

flows. With this released bandwidth, incoming flows have

room to grow. If the fast convergence mechanism is enabled,

when a packet loss event occurs, the algorithm compares the

previous Wmax with the current Wmax. If the current Wmax is

less than the previous Wmax, then it indicates that there are

fewer available resources in the link. The algorithm below

explains the heuristic:

 if (W_max < W_last_max){

 W_last_max = W_max;

 W_max = W_max*(2-)/2;

 } else

 W_last_max = W_max;

Here, W_max (integer) is the current maximum window

size, W_last_max (integer) is the last maximum value

registered, and is the multiplicative decrease factor.

4. Deterministic Loss Model

Assume the packet loss probability is p and the packet

losses are random and independent to each other. In addition,

consider a long-lived CUBIC flow that operates in the

concave region of the congestion avoidance phase. To make

our mathematics easier, the model is simplified by
Figure 1. CUBIC window growth function.

considering its performance in the concave region, and by

using the variables’ expected value. The window growth

process is considered as a Markov chain.

Suppose the initial window size is w, three metrics are

defined as follows:

W(r, w): the window size after r packets are

acknowledged;

T(r, w): the time taken by r packets to be sent and

acknowledged;

Rmax(w): the number of packets acknowledged before a

packet loss happens.

Also, assume that packet loss happens due to buffer

overflow or other damaging phenomenon that prevents the

receiver from acknowledging a received packet correctly.

Furthermore, let us assume only one packet loss occurs at

one time, and the congestion control protocol takes action for

that packet loss event.

Let us define q=1–p as the probability that a packet is

acknowledged successfully. Assume the probability of the

number of packets lost follows a geometric law. Considering

that (r–1) packets (≤ Rmax) have been acknowledged, let us

define the probability mass function for R, such that R is an

independent and identically distributed random variable

(i.i.d.) for the number of packets. Thus,

pprRP r 1)1(][ (3)

where 1,,2,1  maxRr  .

The period of a cycle is T(R, w), and the window size

when the cycle ends is W(R, w).

Considering a time-homogeneous Markov chain

consisting of the states {wn}, where n is the index for each

RTT. Let us define the evolution of wn and Tn:

),(1 nnn wRWw  (4)

),(1 nnn wRTT  (5)

Eqs (3), (4), and (5) define the transition probabilities for

the Markov chain. W(r, w) and T(r, w) are i.i.d. random

variables. The distribution of T(r, w) has an expected value

E[T]. Thus, the throughput x is calculated considering the

expected values of the random variables R and T:

][

][

TE

RE
x  (6)

CUBIC does not depend on RTT, but continuous time

that would take to increase w=(1–) up to Wmax=.

Furthermore, the average period is K, knowing that when w

reaches Wmax=, it goes from the state wi to the state wi+1,

and then, the cycle starts at w=(1–) again after

Rmax+1=Ri+1=1/p packets:

3

C
K


 (7)

Thus, it gives:

maxWw
p

W ),
1

((8)

Considering that the growth rate function is subject to

the packet loss frequency, the following expression may be

derived: E[T]=K. The expected value of packets sent is:

 ][][rRrPRE (9)

As the number of packets sent before a packet loss event

is already established, and assuming that a single packet is

lost in each cycle of the growth rate function, it yields

1/p=E[R]. According to Eq. (1), we may write the protocol

dynamics in each RTT with the following growth function:




















3

3)(
C

tRTTCtW (10)

Thus far, it is known the period of each cycle and the

fact that the protocol works only in the concave region of the

congestion avoidance state. Therefore, the amount of

transmitted packets in each cycle is:

 RTT

K

dttW
p 0

)(
1 (11)

The Eq. (11) calculates the number of packets per cycle.

As it is shown above, the growth function has been modified.

It depends on RTT, and the reference time unit is RTT as

well. This modification does not affect main further

calculations. For the default value of the protocol, = 0.2;

Figure 2 displays the curve plotted according Eq. (10).

Figure 2. CUBIC window growth function

under periodic loss events.
The expected window size is equal to the amount of

packets transmitted during an elapsed time (taking RTT as

the time unit) until a packet loss event occurs. Thus, the

following expression is obtained:

Kp

RTT
WE CUBIC ][(12)

Solving Eq. (12), the expression of the average window

size is calculated:

4

3
4

][






 














P

RTT
CWE CUBIC

 (13)

Additionally, consider that packets travel on an available

link for each flow and arrive to a queue as a Poisson process

with a mean throughput x. This parameter x depends on Eq.

(13). Therefore,

RTT

WE

TE

RE
x

][

][

][
 (14)

5. Analysis of Fast Convergence

The fast convergence mechanism, as indicated in

Section 3.2, adds heuristic in the protocol. In turn, fast

convergence provides room for incoming flows into the

network. Likewise, it is considered that all conditions are met

to run the mechanism of fast convergence.

However, the bandwidth release has a time limit. When

a flow suffers a packet loss event, it might be operating in

two modes: under fast convergence or not under fast

convergence. Then, after an elapsed time, the flow will reach

a threshold where the window sizes of both modes are the

same. Beyond this threshold, the growth rate of the flow that

works under fast convergence becomes more aggressive than

the same flow if it had not used fast convergence.

Consider K1 and K2 as estimated time periods using fast

convergence mode and not using it, respectively. 1 and 2

are the reference maximum window sizes of the cubic

functions using fast convergence mode and not using it,

respectively. Thus, the time threshold may be calculated,

knowing that at that point, the window sizes are equal:

2

3

21

3

1)()(  KtCKtC (15)

Solving Eq. (15) gives the elapsed time to reach the

threshold, and in turn, we can obtain the time limit of fast

convergence. In this fashion,

02  cbtat (16)

where

)(3
)(

3

1

)(

1

12

122

221

2

1

21

KKC
KKKKc

KKb

a












 (17)

The Eq. (16) has the following unique solution:

a

acbb
tlim

2

42 
 (18)

The above result may be negligible if a packet loss event

occurs or the data transmission concludes before the time

limit of fast convergence. Therefore, Eq. (18) is considered

as the time limit tlim, or duration of fast convergence.

6. Validation

This section validates the results of the analysis in the

previous sections. The mathematical analysis in previous

sections allows obtaining theoretical results and

understanding the characteristics of CUBIC.

6.1 Behavior of CUBIC

To analyze the influence of the periodic probability as

shown by Eq. (13), two scenarios are considered. Figure 3

compares the evolution of the average window size against

loss rate of CUBIC, TCP Reno, and Scalable TCP. Figure

3(a) presents the average window size of a flow over a link

with RTT=10 ms. Figure 3(b) displays the behavior of a flow

over a link with RTT=100 ms. As shown in Figure 3(b), the

mean window size of CUBIC has less aggressive evolution

than STCP and TCP Reno. The first one is considerably

aggressive, whereas the second one has a more cautious

growth, but still amply aggressive.

(a) RTT=10 ms. (b) RTT=100 ms.

Figure 3. Validation of Eq. (13), with different RTT values.

Figure 3(b) shows a better performance of CUBIC,

which has a more aggressive growth in high-delay networks,

STCP is even more aggressive, but with less performance

than in low-delay networks. Furthermore, TCP Reno has the

poorest performance in high BDP networks, with high delay.

This easily demonstrates the lack of fairness of both STCP

and TCP Reno flows on high-delay links.

The parameter C is a constant defined by CUBIC and

denotes the window growth rate aggressiveness [10]. We

compared the network response against different values of C.

Figure 4 displays a better performance for CUBIC in high-

delay networks when RTT=10 ms and 100ms respectively.

(a) RTT=10 ms. (b) RTT=100 ms.

Figure 4. Impact of parameter C.

Figure 5 illustrates the relationship between the

parameters K and C through different values of packet loss

rates p. The chosen delay is RTT= 100 ms., because it is the

network scenario where CUBIC has an improved

performance as congestion control protocol. For example,

when p=10
-8

 and C=0.04 gives approximately K=99 s., which

is the estimated time to reach Wmax without considering

further packet loss events. Likewise, for p=10
-8

 and C=0.4,

which is the default value of CUBIC, around K=55 s. is

obtained. Additionally, for a constant value of C, it is shown

that the degree of aggressiveness in window size growth rate

is reflected in a smaller value of the estimated time K.

Figure 5. Relationship between C, p and K, RTT=100 ms.

6.2 Case study: fast convergence

The validations in this section are performed based on

the time interval t, where t =[0; tlim]. This interval denotes

the duration of fast convergence. Figure 6 displays the

available room (in number of packets) versus the duration

interval of fast convergence. Available room refers to as

available bandwidth shared within the duration of fast

convergence so that incoming flows may occupy them, and

in turn, be able to grow. As a result, the flows on the link

obtain a fairer bandwidth allocation.

 Figure 6. Available room Figure 7. Available room

 within t. within t in relation to Wmax.

As explained in Section 4, the time limit or duration of

fast convergence will be completed if it is assumed no further

loss event before this period. Figure 7 displays the available

room (in number of packets) versus the maximum window

size of the last loss event Wmax. This provides us a better

appreciation of available packets to be taken by other flows

from the point of view of the giving flow (and its maximum

window size), whose bandwidth or available packet space

will be available to incoming flows. As discussed earlier, the

heuristic added in the congestion control mechanism detects

an incoming flow through comparing the current maximum

window size with the last one registered.

6.3. Utilization

The link utilization is an important metric in high-speed

networks. This section reports our simulation results

obtained using ns-2 [24]. The experiments are performed

over dedicated links of 150 Mbps for each protocol. The

Figure 8 considers the propagation delay of 20 ms, which is a

network scenario with low BDP.

The performance of CUBIC is compared with TCP

Reno. As shown in Figure 9, there are periodical packet loss

events for both flows. Our simulation experimental results

verified that both CUBIC and TCP Reno have a link

utilization close to ideal with a network scenario favorable to

TCP Reno. The average utilization of the CUBIC flow is of

95.1%, and for the TCP Reno flow is equal to 94.9%.

In the case of a high BDP network environment, the

dedicated link capacity of 150 Mbps is reserved, and the

propagation delay is considered equal to 380 ms. For the

CUBIC flow, periodic loss events are plotted in Figure 9(a).

However, for the TCP Reno flow, Figure 9(b) shows a

continuous growth of the window size.

(a) Window size of CUBIC. (b) Window size of TCP Reno.

Figure 8. Comparison of window sizes.

 (a) Window size, CUBIC. (b) Window size, TCP Reno.

Figure 9. Comparison of window sizes.

(a) Throughput of CUBIC. (b) Throughput of TCP Reno.

Figure 10. Comparison of throughput.
The case where high BDP is presented, the network

environment is favorable to CUBIC. As shown in Figure 10,

the CUBIC throughput achieves higher link utilization than

TCP Reno. CUBIC has an average link utilization of 83.5%

in comparison with TCP Reno with 18.5%. Therefore, TCP

Reno shows a high degree of link underutilization in

comparison with CUBIC.

7. Discussions and Conclusions

In this paper, CUBIC congestion control protocol, which

is a loss based protocol, has been analyzed. Considering

packet loss rate, the CUBIC deterministic model that was

developed allows us study its window adjustment features.

An analysis of the fast convergence heuristic embedded in

the CUBIC congestion control algorithm is presented, which

verified that CUBIC improves the bandwidth distribution

fairness, considering that shared room will be taken by

incoming flows.

Our numerical analysis results also validated that

CUBIC performance in steady state improves in high RTT

networks. Furthermore, we have analyzed link utilization and

compared the dynamics of CUBIC and TCP Reno through

simulation experiments using network simulator ns-2. Both

algorithms are loss based protocols. The simulations showed

that the dynamic performance of CUBIC is better than TCP

Reno in high RTT networks; hence, there is better bandwidth

utilization in high RTT networks by CUBIC.

At present, CUBIC is still a protocol under development.

There is a need for more evaluation studies of this nature. For

the sake of simplicity, in this paper we assumed that packet

losses are not correlated. However, by its nature, the Internet

traffic is bursty on different time scales [25], [26]. Some

changes are needed to make our model accommodate this

property.

Our ongoing efforts also include an extension of this

work, which is conducted in order to develop stochastic

models of CUBIC based on random losses. Additionally,

studies addressing the performance of CUBIC in wireless

networks have yet to be conducted.

References

[1] V. Jacobson, “Congestion Avoidance and Control,” in

Proceedings of ACM SIGCOMM'88, Standford, CA, 1988.

[2] S. Floyd, T. Henderson, A. Gurtov, “The NewReno

Modification to TCP’s Fast Recovery Algorithm,” RFC 3782,

April 2004.

[3] R. N. Shorten, D J. Leith, “H-TCP: TCP for High-speed and

Long-distance Networks,” in Proceedings of the Second

PFLDNet Workshop, Argonne, IL, February 2004.

[4] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”

RFC 3649, December 2003.

[5] T. Kelly, “Scalable TCP: Improving Performance in

Highspeed Wide Area Networks,” ACM SIGCOMM

Computer Communication Review, Vol. 33, Issue 2, pp. 83-

91, April 2003.

[6] C. Jin, D. X. Wei, S. H. Low, “FAST TCP: Motivation,

Architecture, Algorithms, Performance,” in Proceedings of

IEEE INFOCOM, Hong Kong, March 2004.

[7] L. S. Brakmo, S. W. O’Malley, L. L. Peterson, “TCP Vegas:

New Techniques for Congestion Detection and Avoidance,”

in Proceedings ACM SIGCOMM'94, pp. 24-35, 1994.

[8] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, R. Wang,

“TCP Westwood: Bandwidth Estimation for Enhanced

Transport over Wireless Links,” in Proceedings of ACM

Mobicom, Roma, Italia, July 2001.

[9] L. Xu, K. Harfoush, I. Rhee, “Binary Increase Congestion

Control for Fast Long-distance Networks,” in Proceedings of

IEEE INFOCOM, Hong Kong, March 2004.

[10] S. Ha, I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-

Speed TCP Variant,” ACM SIGOPS Operating System

Review, Vol. 42, Issue 5, pp. 64–74, July 2008.

[11] P. Yang, W. Luo, L. Xu, J. Deogun, Y. Lu, “TCP Congestion

Avoidance Algorithm Identification,” in Proceedings of IEEE

ICDCS 2011, Minneapolis, MN, June, 2011.

[12] The Linux Kernel Archives, www.kernel.org

[13] The Linux Cross Reference (LXR),

http://lxr.linux.no/#linux+v2.6.28.7/net/ipv4/tcp_ipv4.c

[14] S. Ha, TCP testing results,

http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing

[15] G. Hasegawa and M. Murata, “Survey on Fairness Issues in

TCP Congestion Control Mechanisms,” IEICE Transactions

on Communications, E84-B(6):1461-1472, June 2001.

[16] J. Widmer, R. Denda, and M. Mauve, “A Survey on TCP-

Friendly Congestion Control,” IEEE Network, May/June

2001.

[17] D. J. Leith, R.N. Shorten, G. McCullagh, “Experimental

Evaluation of CUBIC TCP,” in Proceedings of the 6th

International Workshop on Protocols for Fast Long-Distance

Networks (PFLDnet 2008), 5-7 March, Manchester, U.K.,

2008.

[18] I. Rhee, Rebuttal to “Experimental Evaluation of CUBIC-

TCP” by Leith, Shorten and McCullagh,

http://www4.ncsu.edu/~rhee/Rebuttal-LSM-new.pdf

[19] M. Bateman, S. Bhatti, G. Bigwood, D. Rehunathan, C.

Allison, T. Henderson, D. Miras., A comparison of TCP

behaviour at high speeds using ns-2 and Linux, in ACM

Proceedings of the 11th communications and networking

simulation symposium (CNS '08), pp. 30-37, New York, NY,

USA, 2008.

[20] H. Jamal, K. Sultan, “Performance Analysis of TCP

Congestion Control Algorithms,” International Journal of

Computers and Communications, Vol. 1, Issue 2, 2008.

[21] S. Jain, G. Raina, “An experimental evaluation of CUBIC

TCP in a small buffer regime,” National Conference on

Communications (NCC), Bangalore, India, 28-30 Jan. 2011.

[22] W. Bao, V. W.S. Wong, V. C.M. Leung, “A Model for Steady

State Throughput of TCP CUBIC,” in Proc. of IEEE

Globecom, Miami, Florida, December 2010.

[23] M. Mathis, S. Floyd, A. Romanow, “TCP Selective

Acknowledgment Options,” RFC 2018, October 2006.

[24] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/

[25] A. Botta and A. Pescape, “IP packet interleaving: bridging the

gap between theory and practice,” the 16th IEEE Symposium

on Computer and Communications (ISCC), Kerkyra (Corfu),

Greece, June 2011.

[26] D. X. Wei, P. Cao, and S. H. Low, “Packet Loss Burstiness:

Measurement and Implications for Distributed Applications,”

IEEE IPDPS, 2007.

