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ABSTRACT ∗ 

As one type of stealthy and hard-to-detect attack, low-
rate TCP-targeted DDoS attack can seriously throttle the 
throughput of normal TCP flows for a long time without 
being noticed. The Power Spectral Density (PSD) analysis 
in frequency domain can detect this type of attack 
accurately. However, computational complexity of PSD 
analysis makes it impossible for software implementation at 
high speed network. Taking advantages of powerful 
computing capability and software-like flexibility, an 
embedded accelerator using FPGA for PSD analysis has 
been proposed. Optimized design in autocorrelation 
calculation algorithm and DFT processing distinguishes 
our scheme more meaningful for high speed real-time 
processing with limited resources. Simulation verifies that 
even working at very low system clock frequency, our 
design can still provide quality-service for malicious 
detection in multi-gigabyte rate network. 

1. INTRODUCTIONS  
Low-rate TCP-targeted distributed denial-of-service 

(DDoS) attacks [9], [13] are categorized as a new type of 
hard-to-detect, stealthy attack. This kind of attack can 
throttle the throughput of TCP flows to as low as 10% of its 
normal bandwidth usage, and may last for a long time 
before victims realize its existence. They are also referred 
as shrew attacks [13], or pulsing attacks [14] in literatures. 
In this paper, we will use the term “shrew attacks” for 
simplicity. Shrew attacks take the advantage of time-out 
mechanism in TCP protocol to create illusory congestions.  
Sending bursts with a high pulse rate while keeping a 
relative low average data rate, it deludes normal TCP flows 
to always “see” a busy link when they recover from RTO 
and makes them to be dropped in the end. Due to this subtle 
behavior, it is hard to detect shrew attacks via simple 
volume-monitoring in time domain. 

As shown in Fig. 1, a shrew attack stream is 
modeled by three major parameters including period of 
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attack T, width of burst L, and the burst rate R. The period 
T is the time interval between two consecutive attack 
pulses. The burst width L indicates the time period during 
which attackers send packets in high rate. The burst height 
exhibits the peak rate by which attacking flow is sent. The 
period T is calculated by the estimated TCP RTO timer 
implementation from trusted sources. During the burst with 
a peak rate R, the shrew pulses create a burst and severe 
congestion on the links to the victim. The legitimate TCP 
flows must decrease their sending rate as governed by rate-
limiting mechanism, accordingly. 

Figure 1. An illustration of typical TCP traffic flows 
mingled with shrew attacks. 

Through Power Spectrum Density (PSD) analysis in 
frequency domain, shrew attacks can be easily detected [9]. 
The PSD analysis reveals the fact when the data traffic 
bears shrew attacks, majority of its energy (> 70%) appears 
at low frequency band (< 20 Hz). On the contrary, less 
energy (< 40%) is shown up at the low band. A 
collaborative distributed detection mechanism has been 
proposed in our previous work [9], which can accurately 
detect on-going shrew attacks using spectrum analysis. The 
results of previous experiment show that more than 95% 
shrew attacks are detected with a false positive rate of 10%. 
Since the PSD is obtained through the Fourier transform on 
the autocorrelation function, steps to achieve PSD are 
straightforward. We treat the arrival of packets in a time 
fraction as a random process. After calculating the 
autocorrelation, we convert it to frequency domain via 
Discrete Fourier Transform (DFT). 

Scalability is always one of the critical concerns for 
real applications, since only limited resources can be shared 
to execute security functions in core routers. The 
computational complexity introduced by autocorrelation 
and DFT raises a new challenge for high volume data 



 

processing. Meanwhile, the capability of real-time 
processing should be kept. Security solutions are expected 
to handle malicious attacks before they cause damages. It is 
preferable to contain attacks even before they touch the end 
users. In general, most software based security mechanisms 
are no longer viable against attacks from core networks 
with multi-gigabyte data rate. Like Snort, Bro, and 
WebSTAT, these software-based security solutions are 
limited to process data at rates less than 100Mbps [17]. 

Field Programmable Gate Array (FPGA) devices 
feature both capabilities of powerful computing and 
software-like reprogramming, providing the great flexibility 
for high performance implementation with fast 
development cycles. Hardware nature of FPGA inherits the 
potential for high speed pipeline and parallel processing, 
making the possible of innovations for dedicating 
architectures. Reconfiguration of FPGA allows emerging 
new security solutions can be easily integrated.  

Fast increasing network speed pushes security tasks 
down to the lower hierarchy level of packet-processing for 
reaction. Suspicious patterns concealed in data traffic are 
expected to be recognized before the traffic hits the routing 
fabric. Dedicated accelerators are preferred for real-time 
detection and work in parallel with other routing jobs. Up to 
now, many research efforts on embedded accelerators using 
FPGA have been put and solid achievements have been 
made in recent years [1], [3], [18], [19]. It is clear that 
reconfigurable hardware based implementation has been the 
trend in this area. 

In this paper, a novel embedded accelerator using 
FPGA has been proposed based on our previous work in 
shrew attack detection algorithm [9]. In fact, it is also part 
of our current effort in self-adaptive architecture for 
network infrastructure security [7], [8]. This design focuses 
on the kernel part of abnormal detector where intensive 
computation is requested. It consists of two major 
processing parts: autocorrelation and DFT. The rationale of 
design is to keep the high utilization of limited resources as 
well as high speed real-time processing. Two improvements 
have been made for both parts. Simulation results shows 
that even working at very low system clock frequency, like 
5 MHz, the design can still provide quality-service for 
malicious detection in multi-gigabyte rate network.  

The rest of the paper is arranged as follows: Section 2 
reviews related works briefly; Section 3 presents the system 
architecture of accelerator after an introduction to the 
rationale of frequency domain shrew attack detection; 
Section 4 discusses the improved algorithms for 
autocorrelation and DFT processing; Section 5 evaluates 
the performance based on our simulation results; Section 6 
wrap up this paper with conclusions and discussion of 
future works. 

2. RELATED WORKS 
Many researches have been reported relating to 

network infrastructure security using reconfigurable 

hardware. The common motivation moving from software-
based solutions to hardware-based solutions is to keep the 
pace with increasing network speed. Diverse work has 
covered major steps of traffic analysis at high speed 
network for security purposes. They can be roughly 
categorized into three sub-areas: stream rearrangement [1], 
[17], header processing for packet classification [19], [20], 
[23], and deep content processing for anomaly detection 
[3], [11], [12], [21].  

Stream rearrangement is dedicating for flow 
reorganization which reshapes the received streams to well-
organized flows. During high-speed transmission in 
network, packets may be dropped, duplicated, or re-
ordered. In addition, complicated routing topology may let 
packets of the same flow to be routed through different 
paths. As a result, received packet sequences may be quite 
different from the original ones. It is inefficient to perform 
advanced processes based on such disturbed sequences. The 
major job of stream rearrangements includes stream 
reordering, flow reassembly, and state tracking [1], [17]. 

Packet classification is another important application. 
Packets can be classified by source and destination ports, 
address or protocol type contained in the packet header. A 
common requirement for packet classification applications 
is that it can classify packets based on packets headers. The 
dedicating applications should maintain rule databases for 
all the rules, one for each flow to match the packet headers 
for efficient routing. If the information of packet header 
does not match the database, the packet will be considered 
as an anomaly packet and be shunted for further inspection 
or dropped.  

Considerable interests are focusing on malicious 
detection, since it is the kernel of traffic analysis. Modern 
threats towards network infrastructure make header 
inspection insufficient for malicious detection [1]. These 
malicious threats can be well concealed inside the payload 
of packets, like DDoS attacks, worm attacks. Deep content 
processing is necessary for detecting the malicious packet 
by checking the payload. 

Currently, most deep content approaches follow one of 
the following schemes: signature matching [3], [11], [21] 
and abnormal detection [12], [19]. Signature matching 
scheme directly compares the incoming payloads with 
signature patterns in inner signature database. Detection is 
made if any match of signature patterns is found. Anomaly 
detection scheme performs macro-analysis other than exact 
match for individual packet, so false positive rate is 
introduced. It compares certain parameters of incoming 
packets or flows with known thresholds for judgment under 
an acceptable false positive rate. 

A plethora of hardware implementations have been 
reported with signature matching scheme, since this scheme 
is straightforward for adaptation and efficient under most 
cases. Researchers in Open Network Laboratory (ONL) 
attempt their efforts to transplant software-based SNORT to 
hardware-based version [1]. Though the mainstream 



 

approaches for deep content processing follow this track, it 
is inefficient for shrew attacks detection. 

Anomaly detection schemes also work in frequency 
domain. However, the conversion from time domain to 
frequency domain increases its computational complexity. 
Two analysis methods have been reported along this track, 
they are Power Spectrum Density (PSD) [9], [10] method 
and wavelet method [4]. Since the outcomes of wavelet 
method are highly dependent on the choice of detection 
parameters, it is difficult to find optimal parameters that are 
sensitive enough to detect low-rate distributed attacks while 
maintaining an acceptable false positive alarm rate [4]. 
Though the idea of PSD method has been mentioned for 
identifying normal TCP flows from adverse network 
environment [10], no report shows that it has been applied 
for reconfigurable hardware implementation in DDoS 
attack detection to the best of our knowledge. 

3. ACCELERATOR ARCHITECTURE 
Starting with an introduction to the rationale of our 

spectral analysis scheme to detect the existence of shrew 
DDoS attack flows embedded in normal traffic flows, this 
section also presents the framework of the embedded 
reconfigurable hardware accelerator.  

3.1 Spectral Analysis Principle 
In highly distributed shrew DDoS attacks, malicious 

flows are embedded in the huge amount of normal traffic 
flows. The anomalies are not very obvious on aggregate 
traffic level. Meanwhile, routers cannot afford to monitor 
traffic on flow or packet level, where flow is defined as the 
set of packets with same five tuple {source/destination IP 
addresses, source/destination port numbers, protocol}. We 
proposed to monitor the traffic on a level between the two 
extremes. We define the term super flow to describe all 
packets sharing the same prefix in their destination IP 
address. For convenience, in following when we say flow 
actually we mean super flow.  

For a given flow, we treat the number of packet arrivals 
in a time slot as a stochastic process called packet process 
[10]: {x(t)| t = n ∆, n ∈  N}, where ∆ is a constant time 
interval, which we assume 1 ms. N is a set of positive 
integers, and at each time point t, x(t) is a random variable, 
representing the total number of packets arrived at a router 
in (t-∆, t]. We assume a wide sense stationary random 
process. We define the autocorrelation function of the 
random signal x(t) in discrete time as follows: 
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Rxx(m) captures the correlation of the packet process 
and itself at interval m. If there is any periodicity exists, 
autocorrelation function is capable of enforcing it. The next 
step is to figure out the periodicity embedded inside the 
autocorrelation functions. The Fourier transform of the 

autocorrelation sequence brings the useful interpretation of 
the frequency distribution of the signal. We convert the 
autocorrelation time series by DFT to generate the PSD: 
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Figure 2 compares the PSD for two traffic stream 
patterns corresponding to with and without shrew attacks. It 
is clear that the embedded shrew attack stream shifts the 
solid-line PSD curve towards the lower frequency band, 
while the non-attack stream has a wider frequency range of 
the traffic density in the dash-line curve. By studying the 
PSD of more than 8000 Internet traffic streams [9], we 
obtained the statistical energy distribution patterns. Under a 
hypothesis-testing framework we can detect shrew attacks 
with accuracy as high as 95% at the cost of 10% false 
positive rate.  

 

Figure 2. Comparison of the normalized PSD of 
traffic streams with/without embedded shrew attacks 

3.2 Accelerator Architecture 
Figure 3 illustrates the main function blocks in the 

embedded shrew DDoS attack detection accelerator system. 
It is connected to the network card and counting the 
incoming packets. The Packet Counting unit consists of 
several simple counters, each of them corresponding to one 
flow. The sampling unit records the counter values 
periodically, which is set as 1 ms. When the length of 
sampled series reaches 4096 for certain flow, we calculate 
its autocorrelation sequence and convert it into frequency 
domain using DFT. Comparing the PSD of sampled flow 
with the statistic pattern obtained, we can detect the 
existence of shrew attack flows. In this paper, we focus on 
the two most critical and time-consuming parts: the 
autocorrelation calculation unit and DFT convert unit. 

 

Figure 3. Function blocks of shrew DDoS attack  
detection system 



 

Our previous research revealed that the length of 
sampled series has significant impact on the detection 
accuracy [9]. With the sampling period of 1 ms, a series of 
4096 is necessary if a detection rate of 95% is desired. 
Therefore, we need to calculate the autocorrelation 
sequence and FFT of 4096 data points. The detection delay 
is another important concern. The shrew attacks achieve the 
maximum impact against TCP throughput when its period 
is in the range of 0.5 to 1.0 second. In addition, the TCP 
throughput drops quickly after several attacking pulses.  

Hence, it is desired to obtain the traffic spectrum in a 
period higher than 0.5 second. Thus we have enough time 
to launch flow-filtering mechanisms to segregate malicious 
attacking flows from legitimate ones before damage caused. 
To monitor multiple flow in parallel, the smaller the area 
each unit occupies, higher flow resolution is achieved. 
Within such context, the expected performance metrics in 
autocorrelation and FFT calculation units design are low 
delay, high throughput, and area efficient, in the order of 
priority from high to low.  

4. ALGORITHMS AND DESIGN 
In this section, our approach for hardware accelerator 

has been discussed. This accelerator is the kernel part of 
anomaly detection for deep content processing in our self-
adaptive architecture for network infrastructure security [7]. 
It consists of two parts: autocorrelation calculation unit and 
DFT conversion unit, and is modularized. Taking the well-
organized data sequence from previous stage, the 
accelerator speed the PSD analysis with dedicated FPGA 
device and output the result for decision. Two 
improvements in both autocorrelation and DFT processing 
have been discussed in detail. 

4.1 Autocorrelation Calculation Units 
In order to efficiently use valuable resources, we 

develop a reusable mechanism based on normal 
autocorrelation algorithm. The idea is from the observation 
that some intermediate results from the previous cycle 
during autocorrelation can be reused to the following cycle. 
Since the sampled data sequences are fed with fixed time 
period, operation of autocorrelation will be pretty regular, 
which is very suitable for hardware implementation. 

As defined by Equation (1), Rxx(m) is the sum of (N - 
m) items. Each of the items is obtained by the sampled 
series’ i-th entry multiplied with the (i+m)-th entry. If we 
calculate the autocorrelation sequence every 0.5 second, 
there are n = 500 samplings replaced.  

Therefore, when N - n ≥ m, there are (N – n - m) items 
can be reused in the calculation of next Rxx(m) as illustrated 
in Fig. 4. In another word, each time for Rxx(m), we only 
need to calculate n new items. When N - n ≤ m, the new 
items need to calculate is N - m. Then for the whole 
autocorrelation sequence of length N, the total number of 
new items needs to be calculated is:  
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The total number of re-useable intermediate results is 
shown by Equation (4).  
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Additionally, in order to optimize the performance, it is 
not expected to repeat the calculation every time. We need 
some more storage space for these partial results. As shown 
in Fig. 4, when m > (N - n) the Rxx(m) is calculated using 
purely new samples. So we need (N - n) storage space to 
save the partial results for Rxx(m) where m ≤ (N - n). 
Therefore, the total storage space needed for intermediate 
results is: 
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Figure 4. Re-useable entries in autocorrelation calculation 
(Computing the autocorrelation sequence per 0.5s, n = 500) 

Based on the analysis above, we propose the algorithm 
to calculate the autocorrelation sequence Rxx(m) 
periodically. In each cycle, the multiplication operations are 
needed for every new sampled entry x(j). The new multiply 
results are added with the previously obtained partial sum. 
Then dividing the new summation results by the parameter 
indicated in Equation (1). And then the part of re-useable 
sums are re-generated and stored for next calculation. Using 
this algorithm, we can generate the autocorrelation 
sequence quickly. Figure 5 illustrates the autocorrelation 
calculation algorithm. One advantage of this design is that 
we saved number of multipliers tremendously.  

 

Figure 5. Autocorrelation calculation algorithm 



 

4.2 DFT Conversion Unit 
As we mentioned before, the most computational 

intense part for PSD analysis is DFT Conversion. 
Performing efficient DFT conversion with acceptable cost 
is truly essential to the implementation of real-time system 
(RTS). Hardware core offers the powerful computation 
capability. Taking the advantage of this capability, the 
major bottleneck (processing efficiency) of software 
implementation can be easily cracked, and the performance 
of DFT processing will be dramatically increased. It has 
become a trend using hardware DFT solution for high 
performance RTS design. To make the analysis clearer, we 
omit the factor 1/N at the beginning of equation (2). The 
simplified equation is: 
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The complexity of this equation is O(N2). It increases 
exponentially with respect to the length N of input 
sequence. The cost of direct DFT operation will be 
prohibitively high under the processing of high volume data 
sequence, even for the hardware implementation. Optimal 
algorithms are expected. The typical approaches use FFT 
based algorithms which disassemble the original input 
sequence into several smaller sub-sequences for DFT 
operation. The complexity of such FFT algorithms 
approximates O(Nlog2

N). Comparing the complexity with 
original DFT algorithm, it shrinks impressively when the 
length of data sequence increases. These algorithms are 
very suitable for high volume data sequence processing. 

Another consideration is that the input data sequence 
only contains real values, but DFT processing contains 
complex operation. A better way is desired to perform the 
DFT processing instead of setting all imaginary parts 
equaling to zero. In addition, the design will be mapped to a 
concrete hardware device, processing capability and 
compatibility of that hardware core should be considered.  

With above concerns in mind, we propose a modular 
DFT design as shown in Fig. 6, which consists of two parts, 
2N-point real-valued DFT processing and inner N-point 
FFT processing. The function can be fulfilled through three 
major steps:  

1) 2N-point sequence Decimation;  
2) N-point FFT operation;  
3) 2N-point DFT sequence generation.  

It decimates a 2N-point sequence to a N-point sequence, 
and then performs FFT for this N-point sequence, finally 
recovers 2N-point DFT sequence by exploiting the 
symmetry properties of the N-point DFT sequence. 

The first and the third steps belong to part (1), and the 
second step belongs to part (2). Because each part has 
distinguished boundary, it is easy for modular design which 
is desirable for hardware application. Fig. 6 illustrates the 
system architecture of our approach. 

 

Figure 6．System architecture of DFT unit 

4.2.1. 2N-point Real-valued DFT Processing 

In many real applications, the input sequences only 
contain real-valued data. DFT is an operation working on 
the complex system. A naive approach to apply DFT for 
real-valued data is that appends zero imaginary part to the 
end of real part, and then carries out DFT. It is 
straightforward but inefficient. 

Inspired by the efficient real data processing 
approaches discussed in [6], [15], [16], we propose a novel 
solution that is more efficient both from the perspective of 
time and area. Basically, it splits and reorganizes the 
original 2N-point real sequence to one N-point complex 
sequence; FFT is applied to this N-point sequence; the first 
half of original 2N-point DFT values are obtained from this 
N-point FFT values with additional computation and the 
second half values are obtained from the first half values 
via symmetry property. 

The major steps belong to two parts haven been listed. 
The focus here is on the part dedicating 2N-point sequence 
decimation and generation, which includes step 1 and 3.  

Due to the tedious equation deduction all the way in 
the processing, we skip the theoretical part. Only the basic 
principle will be presented here for a clear view of the 
whole picture. Interested readers can find more detailed 
deductions in our technical report [8]. 
(1) If the length of a real sequence y(n) is an even number, 

then this sequence can always be represented as a 2N-
point y(2N) sequence, where 2N = n. We also assume: 
Y(k) = DFT{y(n)}  (k = 0, 1, 2, … , 2N-1) 

(2) DFT is an operation based on complex-valued data, 
where x(n) = a(n) + jb(n). Take this advantage, we 
decimate the y(2N) to two N sequences y(n1) and y(n2) 
in terms of y(2N) and y(2N+1). Then, form an N-point 
complex-valued sequence:  

x(n) = y(n1) + jy(n2)  (n = 0, 1, 2, … , N-1) 



 

(3) A FFT operation is performed on this N-point 
sequence. Here, we consider it as a black-box, and the 
FFT result is obtained: 

X(k) = FFT{x(n)}  (k = 0, 1, 2, … , N-1) 
(4) Exploit the relations between first half of original Y(k) 

and X(k) obtained from above, an equation can be 
written as: 
Y(k) =M1X*(k)+M2X*(N-k) (k = 0, 1, 2, … , N-1) 
Where M1 and M2 are can refer to pre-calculated 
lookup table for speedup. From this equation, the first 
half original DFT values (i.e.: N points) can be 
obtained. 

(5) Take the advantage of complex symmetry property, the 
rest half of 2N-point can be obtained from the first half 
points: 

Y(2N-k) = Y*(k)   (k = 0, 1, 2, … , N-1) 
Trough these fives steps, the DFT processing of a 2N-

point real sequence has been achieved. The advantage of 
this processing stems from that it explores the characters of 
complex-valued data to reduce the total operation points by 
half at the very begin; and only N points need to do real 
FFT processing. 

4.2.2. Inner N-point FFT processing 

The inner N-point FFT processing part is a unit 
dedicating FFT operation. It runs independently after 
receiving an N-point sequence from the interface. 
Depending on different criterions, the intelligent selector 
will choose the proper algorithm applying for FFT 
operation.  

Due to the heavy computing load and prohibitive cost, 
it is not a recommendation to perform the DFT processing 
with long data sequence directly. Instead, many algorithms 
have been proposed to reduce the complexity. FFT 
algorithms have been great developed and widely applied. 
They derive from the idea called Divide-and-Conquer 
which decomposes long input sequence to several short 
sub-sequences for processing. In this manner, the 

complexity can be reduced to )log( n
NN

nO  instead of O(n2) 

from the original one.  
The well-known FFT algorithms are Radix-2N serial 

algorithms, which perform FFT operations on even number 
sequences. Radix-2 is the most compatible Radix-2N 
algorithm. A restriction for compatible issue is that any FFT 
processing applicable for high Radix-2N will always be 
applicable for the lower Radix-2N algorithms, but it may 
not be true from the reverse side. Because the length 
sequence of 8-powerd value can always be disassembled to 
4-power or 2-powered value, but it may not true from the 
reverse side. Radix-4 algorithm is considered as the good 
balance between high efficiency, low cost and better 
compatibility. It requires no multiplications but performs 4 

points operation simultaneously on the sequence with a 
length of 4-powered value. 

Radix-2N algorithms have inherent commonness. They 
share the same pre-calculated coefficients and the same 
storage memory which is called in-place storage. It means 
different Radix-2N algorithms can be applied to the same 
data sequence without changing any outside conditions as 
long as the preliminary restriction is met. Taking this 
advantage, we can selectively choose the optimal Radix-2N 
algorithm for certain purpose. 

As mentioned, Radix-2 has the best compatibility, and 
Radix-4 contains much better efficiency. Combing both 
together with good balance, it is convinced that more 
reliable and flexible hardware implement can be designed. 

Based on this idea, we develop an intelligent inner FFT 
processing unit. This unit consists of a set of logic 
mechanisms and a set of Radix-2N algorithm parts. The 
former deals with optimal selection; and the later handles 
detail calculation. Radix-2 and Radix-4 algorithms are 
always integrated inside for above reasons; other Radix-2N 
algorithms can also be plugged in if necessary. As long as 
the interfaces are the same, it is convenient to do such 
modification because all Radix-2N algorithms can be 
considered as black-boxes. 

We employ the Xilinx IP core as a black box to 
perform inner FFT processing. Taking the great advantage 
of system supported IP core, the performance has been 
noticeably improved. The logic design takes the maximum 
consideration of the situations which will be met under real 
environment. We believe this kind of design style has 
strong compatibility. 

5. SIMULATION RESULT 
We coded and simulated our design on Xilinx ISE 7.1 

platform with Vertex-4 XC4VFX12 as designated FPGA 
device. Since this accelerator is only one part of self-
adaptive architecture for network infrastructure security [7], 
its interface is designed for data flows that have been pre-
processed by stream rearrangement unit. In order to 
evaluate the design and obtain the performance, we setup 
the test environment where accelerator can directly run.  

The assumption as follows: (1). Data traffic fed into the 
accelerator is well-organized. Since accelerator has no 
ability for rearrangement, we input integrated data flows for 
simplicity. (2) The sampling period for is 1 ms, and 4096 
points are sampled each cycle. 1ms sampling is fast enough 
to most real sensors, this setting is fair for simulation. 
Normal TCP flows contains less 1024 packets, 4096 points’ 
sampling capacity is big enough to hold all the packets. (3) 
The replacement for the next sequence is 500 points. This is 
most common case when performs packets sampling during 
inspection, not all the sampling points will be replaced at a 
time. (4) The design is running with 5MHz frequency. It is 
a courteous frequency in terms of modern hardware device.  

We run it with such a low frequency in order to know 
whether the accelerator still works under relative poor 



 

conditions. With the assumption of fixed sampling period 
we made above, low frequency system clock means less 
processing cycles that the accelerator can have to perform 
the operations. For example, a system running under 5MHz 
for 1 ms has only 2000 clock cycles for use, but the system 
running under 50MHz has 20000 clock cycles for use 
during the same time period. The guideline of our 
simulation assumptions is to provide a relative fair test 
environment. In fact, PowerPC 405 Core embedded in 
Xilinx Virtex-4 FPGA runs up to 450 MHz, which provides 
enough power to our design.  

From the perspective of power and resource efficiency, 
major system resources will be “sleeping” or be reserved 
for other purposes during data sampling. A specific data 
buffer accepts and holds the valid data points. It copies the 
data set to a high speed Block RAM on board. Meanwhile, 
system resources are re-invoked to be ready for full power 
processing. Taking the advantage of these periods, several 
look-up tables are set up to accommodate the high-
frequently used data during DFT processing. Instead of on-
the-fly-calculation, FPGA devices are much good at look-
up-table searching in nature. By reducing the computing 
complexity, the process can be further speeded up. 

Roughly speaking, the upper limit time boundary for 
“real-time” processing should be the interval between two 
start points of different data sequences. In our case, the total 
available processing time is 4096 ms for the first sequence 
or the replacement points multiplied by the sampling rate 
for the rest sequences, which is 500 ms. 

During Autocorrelation, efforts have been made to 
continue reducing resource consumption and processing 
time. With our method, only the first set of autocorrelation 
need to be calculated in full as the normal one, the rest sets 
can always take partial results from their ancestors. The 
evidence is much clear when the ratio of length and 
replacement points keeps large. For length equal to 4096 
points and replacement for each time is 500 points. The 
normal fix length multiplication takes 6.963 ms for one set 
of autocorrelation, while our method only takes 1.881 ms 
except the initial sequence, running under the same 
evaluation environment. 

In order to convert 2-N real points to N complex 
points, conversion coefficients are indispensable. Since 
these coefficients are only depended on the length of 
sequence, they could be fixed as long as the length of 
operation sequence is determined. Building such kind of 
coefficient table for explicit conversion, it can be used for 
good. We perform this step at the beginning after system 
reset or reboot. Most system resources are at idle at that 
time. The simulation result shows that this step can be done 
at 1.008 ms.  

Our experiment compared both Radix_2 and Radix_4 
FFT IP cores. With Radix_4, it takes around 3 ms to 
process the 2N sequence of 4096 points. With Radix_2, it 
takes around 1.5 ms to process N sequence of 2048 points. 
We adopted Radix_2 in our project, even though the total 

time of using Radix_2 IP core is longer than that using 
Radix_4. The major concern is still the efficiency, to keep 
the cost low with the job done. 

Under the processing of recovery 2N-point, the first N 
points are obtained from the multiplication of values from 
M lookup table and the data from N-point FFT. It only 
takes four multipliers and 3 adders to perform this step. The 
rest N points is obtained by explore the symmetry 
properties of complex number. Comparing to FFT 
operation, dramatic resources can be saved, but the cost is 
its delay. Our simulation result shows that 3.5 ms is needed 
to perform a 2N-point sequence with the length equation to 
4096, including 2.5 ms for the first N points and 1 ms for 
the second N points. 

Finally, the total time spending on major parts of our 
design would be:  

msTTTT RECOVERYFFTACTOTAL 88.6=++=  
With 6.88 ms processing time out of 500 ms interval, it 

is good enough to handle the real-time detection. 

6. CONCLUSIONS 
In this paper, an embedded reconfigurable hardware 

accelerator has been designed for the detection of shrew 
DDoS attack in high-speed network. The principle of this 
design is based on the Power Spectrum Density (PSD) 
analysis in frequency domain. The proposed accelerator 
architecture consists of modularized autocorrelation unit 
and DFT conversion unit. Through two optimized design, 
our algorithms can drastically improve the performance in 
the processing of PSD analysis as well as the utilization of 
limited resources. The synthesis and simulation results 
verified that our design can cope with high data rate in 
today’s network. 

In fact, in this paper we just report our preliminary 
results. This work is part of our effort in exploring a self-
adaptive architecture for network infrastructure security [7]. 
The anomaly and malicious attack detection based on 
statistical traffic flow analysis is a critical components in an 
adaptive network infrastructure design. Actually, this is 
merely the initial work towards real-time processing using 
reconfigurable hardware. Further improvements are to be 
done and through which a better performance can be 
achieved by optimizing the structure of design.  

In our ongoing efforts, we are integrating our 
accelerator into the Field Programmable Port Extender 
(FPX) test-bed developed by the Open Network Laboratory 
(ONL) at Washington University in St. Louis [24], where 
we will evaluate the performance of the accelerator in real 
network environment.  

Our future efforts will focus on using techniques 
combing pipeline and parallelism to relieve time constraint 
in the critical path and perform multi-threads execution; 
other algorithm or architecture innovations will be 
convinced to explore the unique features of hardware 



 

design. On the other hand, a more sophisticated test-bed is 
under construction, which will be great help for testing. 
Currently we have expanded the LISAR testbed at SUNY – 
Binghamton with NetFPGA boards, which is developed at 
Stanford University as a reconfigurable hardware platform 
optimized for high-speed networking.  

The NetFPGA includes the all of the logic resources, 
memory, and Gigabit Ethernet interfaces necessary to build 
a complete switch, router, and/or security device [25], [26]. 
Because the entire datapath is implemented in hardware, the 
system can support back-to-back packets at full Gigabit line 
rates and has a processing latency measured in only a few 
clock cycles. With this test-bed, more complicated 
scenarios can be investigated in more detail.  

REFERENCES 
[1]  M. Attig and J. Lockwood, "A Framework For Rule 

Processing in Reconfigurable Network Systems", IEEE 
Symposium on Field-Programmable Custom Computing 
Machines (FCCM), Napa, CA, April 17-20, 2005. 

[2]  F. Baboescu and G. Varghese, "Scalable Packet 
Classification", SIGCOMM'01, August 2001, San Diego, 
CA. 

[3]  Z. Baker and V. Prasanna, "A Methodology for the 
Synthesis of Efficient Intrusion Detection Systems on 
FPGAs", In Proceedings of the Twelfth Annual IEEE 
Symposium on Field Programmable Custom Computing 
Machines 2004 (FCCM '04), 2004. 

[4]  P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal 
Analysis of Network Traffic Anomalies,” Proc. Internet 
Measurement Workshop, 2002. 

[5]  E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A Fast 
Single-Chip Implementation of 8192 Complex Point FFT,” 
IEEE Journal of Solid-Sate Circuits, Vol. 30, No. 3, March 
1995. 

[6]  C.S. Burrus and T.W. Parks Fds, “DFT/FFT and 
convolution algorithms: theory and implementation”, 
Wiley, 1985. 

[7]  Y. Chen and H. Chen, “NeuroNet: An Adaptive 
Infrastructure for Network Security”, International Journal 
on Adaptive Infrastructures, Special Issue on Intelligent 
Systems for Adaptive Infrastructures, accepted to be 
published in 2008. 

[8]  H. Chen and Y. Chen, “A Real Time Shrew DDoS Attack 
Detection Accelerator using Reconfigurable Hardware 
Devices”, Technical Report, Dept. Electrical and Computer 
Engineering, SUNY – Binghamton, September 2007. 

[9]  Y. Chen and K. Hwang, “Collaborative Detection and 
Filtering of Shrew DDoS Attacks using Spectral Analysis,” 
Journal of Parallel and Distributed Computing, special 
issue on Security in Grids and Distributed Systems, Vol. 
66. No. 9, September 2006. 

[10]  C. M. Cheng, H. T. Kung, and K. S. Tan, “Use of spectral 
analysis in defense against DoS attacks,” Proc. of 2002 
IEEE GLOBECOM, Taipei, Taiwan.  

[11]  C. Clark and D. Schimmel, "Scalable pattern matching for 
high speed networks", in Proceedings of the 12th Annual 
IEEE Symposium on Field-Programmable Custom 
Computing Machines (FCCM’04), 20-23 April 2004 
Page(s):249 – 257 

[12]  B. Hutchings, R. Franklin, and D. Carver, "Assisting 
Network Intrusion Detection with Reconfigurable 
Hardware", in Proceedings of 10th Annual IEEE 
Symposium on Field-Programmable Custom Computing 
Machines, April 22-24, 2002, pp. 111 – 120 

[13]  A. Kuzmanovic and E. W. Knightly, “Low-Rate TCP-
Targeted Denial of Service Attacks—The Shrew vs. the 
Mice and Elephants,” in Proceedings of ACM SIGCOMM 
2003, Aug. 2003. 

[14]  X. Luo and R. Chang, “On a New Class of Pulsing Denial-
of-Service Attacks and the Defense,” Proc. of NDSS'05, 
San Diego, CA., Feb. 2-5, 2005. 

[15]  R. Matusiak, “Implementing Fast Fourier Transform 
Algorithms of Real-Valued Sequences With the TMS320 
DSP Platform”, Texas Instruments, August 2001 

[16]  J. Proakis and D. Manolakis, “Digital signal processing: 
principles, algorithms, and applications”, Pearson Prentice 
Hall, 2007. 

[17]  D. Schuehler and J. Lockwood, "A Modular System for 
FPGA-based TCP Flow Processing in High-Speed 
Networks", 14th International Conference on Field 
Programmable Logic and Applications (FPL), Springer 
LNCS 3203, Antwerp, Belgium, August 2004. 

[18]  M. Sima, S. Vassiliadis, S. Cotofana, J. van Eijndhoven, 
and K. Vissers, "Field-Programmable Custom Computing 
Machines: A Taxonomy", in 12th Conference on Field 
Programmable Logic and Applications, Montprllier, 
France, 2002 

[19]  H. Song and J.W. Lockwood, "Efficient Packet 
Classification for Network Intrusion Detection using 
FPGA", International Symp. on Field-Programmable Gate 
Arrays (FPGA'05), Monterey, California, Feb 20-22, 2005. 

[20]  E. Spitznagel, D. Taylor, and J. Turner, “Packet 
Classification Using Extended TCAMs,” in Proceedings of 
IEEE International Conference on Network Protocols 
(ICNP), 2003. 

[21]  Y. Sugawara, M. Inaba, and K. Hiraki, "Over 10Gbps 
String Matching Mechanism for Multi-stream Packet 
Scanning Systems", 14th International Conference on Field 
Programmable Logic and Applications (FPL), Springer 
LNCS 3203, Antwerp, Belgium, August 2004. 

[22]  D. Taylor, “Survey & Taxonomy of Packet Classification 
Techniques,” Tech. Rep. WUCSE-2004-24, Department of 
Computer Science & Engineering, Washington University 
in Saint Louis, May 2004 

[23]  D. Taylor and J. Turner, "Scalable Packet Classification 
using Distributed Crossproducting of Field Labels", IEEE 
INFOCOM 2005 

[24]  Open Network Laboratory, Washington University in St, 
Louis, http://onl.arl.wustl.edu  

[25]  J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. 
Hartke, J. Naous, R. Raghuraman, and J. Luo, “NetFPGA – 
An Open Platform for Gigabit-rate Network Switching and 
Routing,” IEEE International Conference on 
Microelectronic Systems Education (MSE’2007), June 3 – 
4, 2007, San Diego, CA., USA 

[26]  NetFPGA official homepage, http://yuba.stanford. 
edu/NetFPGA/, as of Feb. 1, 2008  

 


