
A Novel Embedded Accelerator for Online Detection
of Shrew DDoS Attacks

Hao Chen, Yu Chen*
Department of Electrical and Computer Engineering

State University of New York - Binghamton, Binghamton, NY 13902, USA

ABSTRACT ∗

As one type of stealthy and hard-to-detect attack, low-
rate TCP-targeted DDoS attack can seriously throttle the
throughput of normal TCP flows for a long time without
being noticed. The Power Spectral Density (PSD) analysis
in frequency domain can detect this type of attack
accurately. However, computational complexity of PSD
analysis makes it impossible for software implementation at
high speed network. Taking advantages of powerful
computing capability and software-like flexibility, an
embedded accelerator using FPGA for PSD analysis has
been proposed. Optimized design in autocorrelation
calculation algorithm and DFT processing distinguishes
our scheme more meaningful for high speed real-time
processing with limited resources. Simulation verifies that
even working at very low system clock frequency, our
design can still provide quality-service for malicious
detection in multi-gigabyte rate network.

1. INTRODUCTIONS
Low-rate TCP-targeted distributed denial-of-service

(DDoS) attacks [9], [13] are categorized as a new type of
hard-to-detect, stealthy attack. This kind of attack can
throttle the throughput of TCP flows to as low as 10% of its
normal bandwidth usage, and may last for a long time
before victims realize its existence. They are also referred
as shrew attacks [13], or pulsing attacks [14] in literatures.
In this paper, we will use the term “shrew attacks” for
simplicity. Shrew attacks take the advantage of time-out
mechanism in TCP protocol to create illusory congestions.
Sending bursts with a high pulse rate while keeping a
relative low average data rate, it deludes normal TCP flows
to always “see” a busy link when they recover from RTO
and makes them to be dropped in the end. Due to this subtle
behavior, it is hard to detect shrew attacks via simple
volume-monitoring in time domain.

As shown in Fig. 1, a shrew attack stream is
modeled by three major parameters including period of

* Manuscript∗submitted on April 04, 2008 to The 2008 International
Conference on Networking, Architecture, and Storage (NAS 2008),
Chongqing, China, June 12 – 14, 2008. Corresponding author: Yu Chen,
Dept. of ECE, SUNY – Binghamton, Binghamton, NY 13902. E-mail:
ychen@binghamton.edu, Tel.: (607) 777-6133.

attack T, width of burst L, and the burst rate R. The period
T is the time interval between two consecutive attack
pulses. The burst width L indicates the time period during
which attackers send packets in high rate. The burst height
exhibits the peak rate by which attacking flow is sent. The
period T is calculated by the estimated TCP RTO timer
implementation from trusted sources. During the burst with
a peak rate R, the shrew pulses create a burst and severe
congestion on the links to the victim. The legitimate TCP
flows must decrease their sending rate as governed by rate-
limiting mechanism, accordingly.

Figure 1. An illustration of typical TCP traffic flows
mingled with shrew attacks.

Through Power Spectrum Density (PSD) analysis in
frequency domain, shrew attacks can be easily detected [9].
The PSD analysis reveals the fact when the data traffic
bears shrew attacks, majority of its energy (> 70%) appears
at low frequency band (< 20 Hz). On the contrary, less
energy (< 40%) is shown up at the low band. A
collaborative distributed detection mechanism has been
proposed in our previous work [9], which can accurately
detect on-going shrew attacks using spectrum analysis. The
results of previous experiment show that more than 95%
shrew attacks are detected with a false positive rate of 10%.
Since the PSD is obtained through the Fourier transform on
the autocorrelation function, steps to achieve PSD are
straightforward. We treat the arrival of packets in a time
fraction as a random process. After calculating the
autocorrelation, we convert it to frequency domain via
Discrete Fourier Transform (DFT).

Scalability is always one of the critical concerns for
real applications, since only limited resources can be shared
to execute security functions in core routers. The
computational complexity introduced by autocorrelation
and DFT raises a new challenge for high volume data

processing. Meanwhile, the capability of real-time
processing should be kept. Security solutions are expected
to handle malicious attacks before they cause damages. It is
preferable to contain attacks even before they touch the end
users. In general, most software based security mechanisms
are no longer viable against attacks from core networks
with multi-gigabyte data rate. Like Snort, Bro, and
WebSTAT, these software-based security solutions are
limited to process data at rates less than 100Mbps [17].

Field Programmable Gate Array (FPGA) devices
feature both capabilities of powerful computing and
software-like reprogramming, providing the great flexibility
for high performance implementation with fast
development cycles. Hardware nature of FPGA inherits the
potential for high speed pipeline and parallel processing,
making the possible of innovations for dedicating
architectures. Reconfiguration of FPGA allows emerging
new security solutions can be easily integrated.

Fast increasing network speed pushes security tasks
down to the lower hierarchy level of packet-processing for
reaction. Suspicious patterns concealed in data traffic are
expected to be recognized before the traffic hits the routing
fabric. Dedicated accelerators are preferred for real-time
detection and work in parallel with other routing jobs. Up to
now, many research efforts on embedded accelerators using
FPGA have been put and solid achievements have been
made in recent years [1], [3], [18], [19]. It is clear that
reconfigurable hardware based implementation has been the
trend in this area.

In this paper, a novel embedded accelerator using
FPGA has been proposed based on our previous work in
shrew attack detection algorithm [9]. In fact, it is also part
of our current effort in self-adaptive architecture for
network infrastructure security [7], [8]. This design focuses
on the kernel part of abnormal detector where intensive
computation is requested. It consists of two major
processing parts: autocorrelation and DFT. The rationale of
design is to keep the high utilization of limited resources as
well as high speed real-time processing. Two improvements
have been made for both parts. Simulation results shows
that even working at very low system clock frequency, like
5 MHz, the design can still provide quality-service for
malicious detection in multi-gigabyte rate network.

The rest of the paper is arranged as follows: Section 2
reviews related works briefly; Section 3 presents the system
architecture of accelerator after an introduction to the
rationale of frequency domain shrew attack detection;
Section 4 discusses the improved algorithms for
autocorrelation and DFT processing; Section 5 evaluates
the performance based on our simulation results; Section 6
wrap up this paper with conclusions and discussion of
future works.

2. RELATED WORKS
Many researches have been reported relating to

network infrastructure security using reconfigurable

hardware. The common motivation moving from software-
based solutions to hardware-based solutions is to keep the
pace with increasing network speed. Diverse work has
covered major steps of traffic analysis at high speed
network for security purposes. They can be roughly
categorized into three sub-areas: stream rearrangement [1],
[17], header processing for packet classification [19], [20],
[23], and deep content processing for anomaly detection
[3], [11], [12], [21].

Stream rearrangement is dedicating for flow
reorganization which reshapes the received streams to well-
organized flows. During high-speed transmission in
network, packets may be dropped, duplicated, or re-
ordered. In addition, complicated routing topology may let
packets of the same flow to be routed through different
paths. As a result, received packet sequences may be quite
different from the original ones. It is inefficient to perform
advanced processes based on such disturbed sequences. The
major job of stream rearrangements includes stream
reordering, flow reassembly, and state tracking [1], [17].

Packet classification is another important application.
Packets can be classified by source and destination ports,
address or protocol type contained in the packet header. A
common requirement for packet classification applications
is that it can classify packets based on packets headers. The
dedicating applications should maintain rule databases for
all the rules, one for each flow to match the packet headers
for efficient routing. If the information of packet header
does not match the database, the packet will be considered
as an anomaly packet and be shunted for further inspection
or dropped.

Considerable interests are focusing on malicious
detection, since it is the kernel of traffic analysis. Modern
threats towards network infrastructure make header
inspection insufficient for malicious detection [1]. These
malicious threats can be well concealed inside the payload
of packets, like DDoS attacks, worm attacks. Deep content
processing is necessary for detecting the malicious packet
by checking the payload.

Currently, most deep content approaches follow one of
the following schemes: signature matching [3], [11], [21]
and abnormal detection [12], [19]. Signature matching
scheme directly compares the incoming payloads with
signature patterns in inner signature database. Detection is
made if any match of signature patterns is found. Anomaly
detection scheme performs macro-analysis other than exact
match for individual packet, so false positive rate is
introduced. It compares certain parameters of incoming
packets or flows with known thresholds for judgment under
an acceptable false positive rate.

A plethora of hardware implementations have been
reported with signature matching scheme, since this scheme
is straightforward for adaptation and efficient under most
cases. Researchers in Open Network Laboratory (ONL)
attempt their efforts to transplant software-based SNORT to
hardware-based version [1]. Though the mainstream

approaches for deep content processing follow this track, it
is inefficient for shrew attacks detection.

Anomaly detection schemes also work in frequency
domain. However, the conversion from time domain to
frequency domain increases its computational complexity.
Two analysis methods have been reported along this track,
they are Power Spectrum Density (PSD) [9], [10] method
and wavelet method [4]. Since the outcomes of wavelet
method are highly dependent on the choice of detection
parameters, it is difficult to find optimal parameters that are
sensitive enough to detect low-rate distributed attacks while
maintaining an acceptable false positive alarm rate [4].
Though the idea of PSD method has been mentioned for
identifying normal TCP flows from adverse network
environment [10], no report shows that it has been applied
for reconfigurable hardware implementation in DDoS
attack detection to the best of our knowledge.

3. ACCELERATOR ARCHITECTURE
Starting with an introduction to the rationale of our

spectral analysis scheme to detect the existence of shrew
DDoS attack flows embedded in normal traffic flows, this
section also presents the framework of the embedded
reconfigurable hardware accelerator.

3.1 Spectral Analysis Principle
In highly distributed shrew DDoS attacks, malicious

flows are embedded in the huge amount of normal traffic
flows. The anomalies are not very obvious on aggregate
traffic level. Meanwhile, routers cannot afford to monitor
traffic on flow or packet level, where flow is defined as the
set of packets with same five tuple {source/destination IP
addresses, source/destination port numbers, protocol}. We
proposed to monitor the traffic on a level between the two
extremes. We define the term super flow to describe all
packets sharing the same prefix in their destination IP
address. For convenience, in following when we say flow
actually we mean super flow.

For a given flow, we treat the number of packet arrivals
in a time slot as a stochastic process called packet process
[10]: {x(t)| t = n ∆, n ∈ N}, where ∆ is a constant time
interval, which we assume 1 ms. N is a set of positive
integers, and at each time point t, x(t) is a random variable,
representing the total number of packets arrived at a router
in (t-∆, t]. We assume a wide sense stationary random
process. We define the autocorrelation function of the
random signal x(t) in discrete time as follows:

∑
−−

=

+
−

=
1

0
)]()([1)(

mN

n
xx mnxnx

mN
mR (1)

Rxx(m) captures the correlation of the packet process
and itself at interval m. If there is any periodicity exists,
autocorrelation function is capable of enforcing it. The next
step is to figure out the periodicity embedded inside the
autocorrelation functions. The Fourier transform of the

autocorrelation sequence brings the useful interpretation of
the frequency distribution of the signal. We convert the
autocorrelation time series by DFT to generate the PSD:

∑
−

=

×=
1

0
)(1)(

N

n

kn
Nxx WnR

N
kY , k=0,1,2,…,N-1 (2)

where N
knj

kn
N eW

π2−

= .

Figure 2 compares the PSD for two traffic stream
patterns corresponding to with and without shrew attacks. It
is clear that the embedded shrew attack stream shifts the
solid-line PSD curve towards the lower frequency band,
while the non-attack stream has a wider frequency range of
the traffic density in the dash-line curve. By studying the
PSD of more than 8000 Internet traffic streams [9], we
obtained the statistical energy distribution patterns. Under a
hypothesis-testing framework we can detect shrew attacks
with accuracy as high as 95% at the cost of 10% false
positive rate.

Figure 2. Comparison of the normalized PSD of
traffic streams with/without embedded shrew attacks

3.2 Accelerator Architecture
Figure 3 illustrates the main function blocks in the

embedded shrew DDoS attack detection accelerator system.
It is connected to the network card and counting the
incoming packets. The Packet Counting unit consists of
several simple counters, each of them corresponding to one
flow. The sampling unit records the counter values
periodically, which is set as 1 ms. When the length of
sampled series reaches 4096 for certain flow, we calculate
its autocorrelation sequence and convert it into frequency
domain using DFT. Comparing the PSD of sampled flow
with the statistic pattern obtained, we can detect the
existence of shrew attack flows. In this paper, we focus on
the two most critical and time-consuming parts: the
autocorrelation calculation unit and DFT convert unit.

Figure 3. Function blocks of shrew DDoS attack
detection system

Our previous research revealed that the length of
sampled series has significant impact on the detection
accuracy [9]. With the sampling period of 1 ms, a series of
4096 is necessary if a detection rate of 95% is desired.
Therefore, we need to calculate the autocorrelation
sequence and FFT of 4096 data points. The detection delay
is another important concern. The shrew attacks achieve the
maximum impact against TCP throughput when its period
is in the range of 0.5 to 1.0 second. In addition, the TCP
throughput drops quickly after several attacking pulses.

Hence, it is desired to obtain the traffic spectrum in a
period higher than 0.5 second. Thus we have enough time
to launch flow-filtering mechanisms to segregate malicious
attacking flows from legitimate ones before damage caused.
To monitor multiple flow in parallel, the smaller the area
each unit occupies, higher flow resolution is achieved.
Within such context, the expected performance metrics in
autocorrelation and FFT calculation units design are low
delay, high throughput, and area efficient, in the order of
priority from high to low.

4. ALGORITHMS AND DESIGN
In this section, our approach for hardware accelerator

has been discussed. This accelerator is the kernel part of
anomaly detection for deep content processing in our self-
adaptive architecture for network infrastructure security [7].
It consists of two parts: autocorrelation calculation unit and
DFT conversion unit, and is modularized. Taking the well-
organized data sequence from previous stage, the
accelerator speed the PSD analysis with dedicated FPGA
device and output the result for decision. Two
improvements in both autocorrelation and DFT processing
have been discussed in detail.

4.1 Autocorrelation Calculation Units
In order to efficiently use valuable resources, we

develop a reusable mechanism based on normal
autocorrelation algorithm. The idea is from the observation
that some intermediate results from the previous cycle
during autocorrelation can be reused to the following cycle.
Since the sampled data sequences are fed with fixed time
period, operation of autocorrelation will be pretty regular,
which is very suitable for hardware implementation.

As defined by Equation (1), Rxx(m) is the sum of (N -
m) items. Each of the items is obtained by the sampled
series’ i-th entry multiplied with the (i+m)-th entry. If we
calculate the autocorrelation sequence every 0.5 second,
there are n = 500 samplings replaced.

Therefore, when N - n ≥ m, there are (N – n - m) items
can be reused in the calculation of next Rxx(m) as illustrated
in Fig. 4. In another word, each time for Rxx(m), we only
need to calculate n new items. When N - n ≤ m, the new
items need to calculate is N - m. Then for the whole
autocorrelation sequence of length N, the total number of
new items needs to be calculated is:

1
2

)
2
3(

2
)2)(1()(

])([

2

10

+−−=
−−

+−=

−−+= ∑∑
+−=

−

=

nnNnnnNn

mNnnp
N

nNm

nN

m (3)

The total number of re-useable intermediate results is
shown by Equation (4).

∑
−−−

=−−
−

=

nN

m

nNnNmnN
0 2

)1)(()((4)

Additionally, in order to optimize the performance, it is
not expected to repeat the calculation every time. We need
some more storage space for these partial results. As shown
in Fig. 4, when m > (N - n) the Rxx(m) is calculated using
purely new samples. So we need (N - n) storage space to
save the partial results for Rxx(m) where m ≤ (N - n).
Therefore, the total storage space needed for intermediate
results is:

2
)1)(()(

2
)1)((+−−

=−+
−−−

=
nNnNnNnNnNq (5)

Figure 4. Re-useable entries in autocorrelation calculation
(Computing the autocorrelation sequence per 0.5s, n = 500)

Based on the analysis above, we propose the algorithm
to calculate the autocorrelation sequence Rxx(m)
periodically. In each cycle, the multiplication operations are
needed for every new sampled entry x(j). The new multiply
results are added with the previously obtained partial sum.
Then dividing the new summation results by the parameter
indicated in Equation (1). And then the part of re-useable
sums are re-generated and stored for next calculation. Using
this algorithm, we can generate the autocorrelation
sequence quickly. Figure 5 illustrates the autocorrelation
calculation algorithm. One advantage of this design is that
we saved number of multipliers tremendously.

Figure 5. Autocorrelation calculation algorithm

4.2 DFT Conversion Unit
As we mentioned before, the most computational

intense part for PSD analysis is DFT Conversion.
Performing efficient DFT conversion with acceptable cost
is truly essential to the implementation of real-time system
(RTS). Hardware core offers the powerful computation
capability. Taking the advantage of this capability, the
major bottleneck (processing efficiency) of software
implementation can be easily cracked, and the performance
of DFT processing will be dramatically increased. It has
become a trend using hardware DFT solution for high
performance RTS design. To make the analysis clearer, we
omit the factor 1/N at the beginning of equation (2). The
simplified equation is:

∑
−

=

×=
1

0

)()(
N

n

kn
Nxx WnRkY (6)

The complexity of this equation is O(N2). It increases
exponentially with respect to the length N of input
sequence. The cost of direct DFT operation will be
prohibitively high under the processing of high volume data
sequence, even for the hardware implementation. Optimal
algorithms are expected. The typical approaches use FFT
based algorithms which disassemble the original input
sequence into several smaller sub-sequences for DFT
operation. The complexity of such FFT algorithms
approximates O(Nlog2

N). Comparing the complexity with
original DFT algorithm, it shrinks impressively when the
length of data sequence increases. These algorithms are
very suitable for high volume data sequence processing.

Another consideration is that the input data sequence
only contains real values, but DFT processing contains
complex operation. A better way is desired to perform the
DFT processing instead of setting all imaginary parts
equaling to zero. In addition, the design will be mapped to a
concrete hardware device, processing capability and
compatibility of that hardware core should be considered.

With above concerns in mind, we propose a modular
DFT design as shown in Fig. 6, which consists of two parts,
2N-point real-valued DFT processing and inner N-point
FFT processing. The function can be fulfilled through three
major steps:

1) 2N-point sequence Decimation;
2) N-point FFT operation;
3) 2N-point DFT sequence generation.

It decimates a 2N-point sequence to a N-point sequence,
and then performs FFT for this N-point sequence, finally
recovers 2N-point DFT sequence by exploiting the
symmetry properties of the N-point DFT sequence.

The first and the third steps belong to part (1), and the
second step belongs to part (2). Because each part has
distinguished boundary, it is easy for modular design which
is desirable for hardware application. Fig. 6 illustrates the
system architecture of our approach.

Figure 6．System architecture of DFT unit

4.2.1. 2N-point Real-valued DFT Processing

In many real applications, the input sequences only
contain real-valued data. DFT is an operation working on
the complex system. A naive approach to apply DFT for
real-valued data is that appends zero imaginary part to the
end of real part, and then carries out DFT. It is
straightforward but inefficient.

Inspired by the efficient real data processing
approaches discussed in [6], [15], [16], we propose a novel
solution that is more efficient both from the perspective of
time and area. Basically, it splits and reorganizes the
original 2N-point real sequence to one N-point complex
sequence; FFT is applied to this N-point sequence; the first
half of original 2N-point DFT values are obtained from this
N-point FFT values with additional computation and the
second half values are obtained from the first half values
via symmetry property.

The major steps belong to two parts haven been listed.
The focus here is on the part dedicating 2N-point sequence
decimation and generation, which includes step 1 and 3.

Due to the tedious equation deduction all the way in
the processing, we skip the theoretical part. Only the basic
principle will be presented here for a clear view of the
whole picture. Interested readers can find more detailed
deductions in our technical report [8].
(1) If the length of a real sequence y(n) is an even number,

then this sequence can always be represented as a 2N-
point y(2N) sequence, where 2N = n. We also assume:
Y(k) = DFT{y(n)} (k = 0, 1, 2, … , 2N-1)

(2) DFT is an operation based on complex-valued data,
where x(n) = a(n) + jb(n). Take this advantage, we
decimate the y(2N) to two N sequences y(n1) and y(n2)
in terms of y(2N) and y(2N+1). Then, form an N-point
complex-valued sequence:

x(n) = y(n1) + jy(n2) (n = 0, 1, 2, … , N-1)

(3) A FFT operation is performed on this N-point
sequence. Here, we consider it as a black-box, and the
FFT result is obtained:

X(k) = FFT{x(n)} (k = 0, 1, 2, … , N-1)
(4) Exploit the relations between first half of original Y(k)

and X(k) obtained from above, an equation can be
written as:
Y(k) =M1X*(k)+M2X*(N-k) (k = 0, 1, 2, … , N-1)
Where M1 and M2 are can refer to pre-calculated
lookup table for speedup. From this equation, the first
half original DFT values (i.e.: N points) can be
obtained.

(5) Take the advantage of complex symmetry property, the
rest half of 2N-point can be obtained from the first half
points:

Y(2N-k) = Y*(k) (k = 0, 1, 2, … , N-1)
Trough these fives steps, the DFT processing of a 2N-

point real sequence has been achieved. The advantage of
this processing stems from that it explores the characters of
complex-valued data to reduce the total operation points by
half at the very begin; and only N points need to do real
FFT processing.

4.2.2. Inner N-point FFT processing

The inner N-point FFT processing part is a unit
dedicating FFT operation. It runs independently after
receiving an N-point sequence from the interface.
Depending on different criterions, the intelligent selector
will choose the proper algorithm applying for FFT
operation.

Due to the heavy computing load and prohibitive cost,
it is not a recommendation to perform the DFT processing
with long data sequence directly. Instead, many algorithms
have been proposed to reduce the complexity. FFT
algorithms have been great developed and widely applied.
They derive from the idea called Divide-and-Conquer
which decomposes long input sequence to several short
sub-sequences for processing. In this manner, the

complexity can be reduced to)log(n
NN

nO instead of O(n2)

from the original one.
The well-known FFT algorithms are Radix-2N serial

algorithms, which perform FFT operations on even number
sequences. Radix-2 is the most compatible Radix-2N
algorithm. A restriction for compatible issue is that any FFT
processing applicable for high Radix-2N will always be
applicable for the lower Radix-2N algorithms, but it may
not be true from the reverse side. Because the length
sequence of 8-powerd value can always be disassembled to
4-power or 2-powered value, but it may not true from the
reverse side. Radix-4 algorithm is considered as the good
balance between high efficiency, low cost and better
compatibility. It requires no multiplications but performs 4

points operation simultaneously on the sequence with a
length of 4-powered value.

Radix-2N algorithms have inherent commonness. They
share the same pre-calculated coefficients and the same
storage memory which is called in-place storage. It means
different Radix-2N algorithms can be applied to the same
data sequence without changing any outside conditions as
long as the preliminary restriction is met. Taking this
advantage, we can selectively choose the optimal Radix-2N
algorithm for certain purpose.

As mentioned, Radix-2 has the best compatibility, and
Radix-4 contains much better efficiency. Combing both
together with good balance, it is convinced that more
reliable and flexible hardware implement can be designed.

Based on this idea, we develop an intelligent inner FFT
processing unit. This unit consists of a set of logic
mechanisms and a set of Radix-2N algorithm parts. The
former deals with optimal selection; and the later handles
detail calculation. Radix-2 and Radix-4 algorithms are
always integrated inside for above reasons; other Radix-2N
algorithms can also be plugged in if necessary. As long as
the interfaces are the same, it is convenient to do such
modification because all Radix-2N algorithms can be
considered as black-boxes.

We employ the Xilinx IP core as a black box to
perform inner FFT processing. Taking the great advantage
of system supported IP core, the performance has been
noticeably improved. The logic design takes the maximum
consideration of the situations which will be met under real
environment. We believe this kind of design style has
strong compatibility.

5. SIMULATION RESULT
We coded and simulated our design on Xilinx ISE 7.1

platform with Vertex-4 XC4VFX12 as designated FPGA
device. Since this accelerator is only one part of self-
adaptive architecture for network infrastructure security [7],
its interface is designed for data flows that have been pre-
processed by stream rearrangement unit. In order to
evaluate the design and obtain the performance, we setup
the test environment where accelerator can directly run.

The assumption as follows: (1). Data traffic fed into the
accelerator is well-organized. Since accelerator has no
ability for rearrangement, we input integrated data flows for
simplicity. (2) The sampling period for is 1 ms, and 4096
points are sampled each cycle. 1ms sampling is fast enough
to most real sensors, this setting is fair for simulation.
Normal TCP flows contains less 1024 packets, 4096 points’
sampling capacity is big enough to hold all the packets. (3)
The replacement for the next sequence is 500 points. This is
most common case when performs packets sampling during
inspection, not all the sampling points will be replaced at a
time. (4) The design is running with 5MHz frequency. It is
a courteous frequency in terms of modern hardware device.

We run it with such a low frequency in order to know
whether the accelerator still works under relative poor

conditions. With the assumption of fixed sampling period
we made above, low frequency system clock means less
processing cycles that the accelerator can have to perform
the operations. For example, a system running under 5MHz
for 1 ms has only 2000 clock cycles for use, but the system
running under 50MHz has 20000 clock cycles for use
during the same time period. The guideline of our
simulation assumptions is to provide a relative fair test
environment. In fact, PowerPC 405 Core embedded in
Xilinx Virtex-4 FPGA runs up to 450 MHz, which provides
enough power to our design.

From the perspective of power and resource efficiency,
major system resources will be “sleeping” or be reserved
for other purposes during data sampling. A specific data
buffer accepts and holds the valid data points. It copies the
data set to a high speed Block RAM on board. Meanwhile,
system resources are re-invoked to be ready for full power
processing. Taking the advantage of these periods, several
look-up tables are set up to accommodate the high-
frequently used data during DFT processing. Instead of on-
the-fly-calculation, FPGA devices are much good at look-
up-table searching in nature. By reducing the computing
complexity, the process can be further speeded up.

Roughly speaking, the upper limit time boundary for
“real-time” processing should be the interval between two
start points of different data sequences. In our case, the total
available processing time is 4096 ms for the first sequence
or the replacement points multiplied by the sampling rate
for the rest sequences, which is 500 ms.

During Autocorrelation, efforts have been made to
continue reducing resource consumption and processing
time. With our method, only the first set of autocorrelation
need to be calculated in full as the normal one, the rest sets
can always take partial results from their ancestors. The
evidence is much clear when the ratio of length and
replacement points keeps large. For length equal to 4096
points and replacement for each time is 500 points. The
normal fix length multiplication takes 6.963 ms for one set
of autocorrelation, while our method only takes 1.881 ms
except the initial sequence, running under the same
evaluation environment.

In order to convert 2-N real points to N complex
points, conversion coefficients are indispensable. Since
these coefficients are only depended on the length of
sequence, they could be fixed as long as the length of
operation sequence is determined. Building such kind of
coefficient table for explicit conversion, it can be used for
good. We perform this step at the beginning after system
reset or reboot. Most system resources are at idle at that
time. The simulation result shows that this step can be done
at 1.008 ms.

Our experiment compared both Radix_2 and Radix_4
FFT IP cores. With Radix_4, it takes around 3 ms to
process the 2N sequence of 4096 points. With Radix_2, it
takes around 1.5 ms to process N sequence of 2048 points.
We adopted Radix_2 in our project, even though the total

time of using Radix_2 IP core is longer than that using
Radix_4. The major concern is still the efficiency, to keep
the cost low with the job done.

Under the processing of recovery 2N-point, the first N
points are obtained from the multiplication of values from
M lookup table and the data from N-point FFT. It only
takes four multipliers and 3 adders to perform this step. The
rest N points is obtained by explore the symmetry
properties of complex number. Comparing to FFT
operation, dramatic resources can be saved, but the cost is
its delay. Our simulation result shows that 3.5 ms is needed
to perform a 2N-point sequence with the length equation to
4096, including 2.5 ms for the first N points and 1 ms for
the second N points.

Finally, the total time spending on major parts of our
design would be:

msTTTT RECOVERYFFTACTOTAL 88.6=++=
With 6.88 ms processing time out of 500 ms interval, it

is good enough to handle the real-time detection.

6. CONCLUSIONS
In this paper, an embedded reconfigurable hardware

accelerator has been designed for the detection of shrew
DDoS attack in high-speed network. The principle of this
design is based on the Power Spectrum Density (PSD)
analysis in frequency domain. The proposed accelerator
architecture consists of modularized autocorrelation unit
and DFT conversion unit. Through two optimized design,
our algorithms can drastically improve the performance in
the processing of PSD analysis as well as the utilization of
limited resources. The synthesis and simulation results
verified that our design can cope with high data rate in
today’s network.

In fact, in this paper we just report our preliminary
results. This work is part of our effort in exploring a self-
adaptive architecture for network infrastructure security [7].
The anomaly and malicious attack detection based on
statistical traffic flow analysis is a critical components in an
adaptive network infrastructure design. Actually, this is
merely the initial work towards real-time processing using
reconfigurable hardware. Further improvements are to be
done and through which a better performance can be
achieved by optimizing the structure of design.

In our ongoing efforts, we are integrating our
accelerator into the Field Programmable Port Extender
(FPX) test-bed developed by the Open Network Laboratory
(ONL) at Washington University in St. Louis [24], where
we will evaluate the performance of the accelerator in real
network environment.

Our future efforts will focus on using techniques
combing pipeline and parallelism to relieve time constraint
in the critical path and perform multi-threads execution;
other algorithm or architecture innovations will be
convinced to explore the unique features of hardware

design. On the other hand, a more sophisticated test-bed is
under construction, which will be great help for testing.
Currently we have expanded the LISAR testbed at SUNY –
Binghamton with NetFPGA boards, which is developed at
Stanford University as a reconfigurable hardware platform
optimized for high-speed networking.

The NetFPGA includes the all of the logic resources,
memory, and Gigabit Ethernet interfaces necessary to build
a complete switch, router, and/or security device [25], [26].
Because the entire datapath is implemented in hardware, the
system can support back-to-back packets at full Gigabit line
rates and has a processing latency measured in only a few
clock cycles. With this test-bed, more complicated
scenarios can be investigated in more detail.

REFERENCES
[1] M. Attig and J. Lockwood, "A Framework For Rule

Processing in Reconfigurable Network Systems", IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM), Napa, CA, April 17-20, 2005.

[2] F. Baboescu and G. Varghese, "Scalable Packet
Classification", SIGCOMM'01, August 2001, San Diego,
CA.

[3] Z. Baker and V. Prasanna, "A Methodology for the
Synthesis of Efficient Intrusion Detection Systems on
FPGAs", In Proceedings of the Twelfth Annual IEEE
Symposium on Field Programmable Custom Computing
Machines 2004 (FCCM '04), 2004.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal
Analysis of Network Traffic Anomalies,” Proc. Internet
Measurement Workshop, 2002.

[5] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A Fast
Single-Chip Implementation of 8192 Complex Point FFT,”
IEEE Journal of Solid-Sate Circuits, Vol. 30, No. 3, March
1995.

[6] C.S. Burrus and T.W. Parks Fds, “DFT/FFT and
convolution algorithms: theory and implementation”,
Wiley, 1985.

[7] Y. Chen and H. Chen, “NeuroNet: An Adaptive
Infrastructure for Network Security”, International Journal
on Adaptive Infrastructures, Special Issue on Intelligent
Systems for Adaptive Infrastructures, accepted to be
published in 2008.

[8] H. Chen and Y. Chen, “A Real Time Shrew DDoS Attack
Detection Accelerator using Reconfigurable Hardware
Devices”, Technical Report, Dept. Electrical and Computer
Engineering, SUNY – Binghamton, September 2007.

[9] Y. Chen and K. Hwang, “Collaborative Detection and
Filtering of Shrew DDoS Attacks using Spectral Analysis,”
Journal of Parallel and Distributed Computing, special
issue on Security in Grids and Distributed Systems, Vol.
66. No. 9, September 2006.

[10] C. M. Cheng, H. T. Kung, and K. S. Tan, “Use of spectral
analysis in defense against DoS attacks,” Proc. of 2002
IEEE GLOBECOM, Taipei, Taiwan.

[11] C. Clark and D. Schimmel, "Scalable pattern matching for
high speed networks", in Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’04), 20-23 April 2004
Page(s):249 – 257

[12] B. Hutchings, R. Franklin, and D. Carver, "Assisting
Network Intrusion Detection with Reconfigurable
Hardware", in Proceedings of 10th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, April 22-24, 2002, pp. 111 – 120

[13] A. Kuzmanovic and E. W. Knightly, “Low-Rate TCP-
Targeted Denial of Service Attacks—The Shrew vs. the
Mice and Elephants,” in Proceedings of ACM SIGCOMM
2003, Aug. 2003.

[14] X. Luo and R. Chang, “On a New Class of Pulsing Denial-
of-Service Attacks and the Defense,” Proc. of NDSS'05,
San Diego, CA., Feb. 2-5, 2005.

[15] R. Matusiak, “Implementing Fast Fourier Transform
Algorithms of Real-Valued Sequences With the TMS320
DSP Platform”, Texas Instruments, August 2001

[16] J. Proakis and D. Manolakis, “Digital signal processing:
principles, algorithms, and applications”, Pearson Prentice
Hall, 2007.

[17] D. Schuehler and J. Lockwood, "A Modular System for
FPGA-based TCP Flow Processing in High-Speed
Networks", 14th International Conference on Field
Programmable Logic and Applications (FPL), Springer
LNCS 3203, Antwerp, Belgium, August 2004.

[18] M. Sima, S. Vassiliadis, S. Cotofana, J. van Eijndhoven,
and K. Vissers, "Field-Programmable Custom Computing
Machines: A Taxonomy", in 12th Conference on Field
Programmable Logic and Applications, Montprllier,
France, 2002

[19] H. Song and J.W. Lockwood, "Efficient Packet
Classification for Network Intrusion Detection using
FPGA", International Symp. on Field-Programmable Gate
Arrays (FPGA'05), Monterey, California, Feb 20-22, 2005.

[20] E. Spitznagel, D. Taylor, and J. Turner, “Packet
Classification Using Extended TCAMs,” in Proceedings of
IEEE International Conference on Network Protocols
(ICNP), 2003.

[21] Y. Sugawara, M. Inaba, and K. Hiraki, "Over 10Gbps
String Matching Mechanism for Multi-stream Packet
Scanning Systems", 14th International Conference on Field
Programmable Logic and Applications (FPL), Springer
LNCS 3203, Antwerp, Belgium, August 2004.

[22] D. Taylor, “Survey & Taxonomy of Packet Classification
Techniques,” Tech. Rep. WUCSE-2004-24, Department of
Computer Science & Engineering, Washington University
in Saint Louis, May 2004

[23] D. Taylor and J. Turner, "Scalable Packet Classification
using Distributed Crossproducting of Field Labels", IEEE
INFOCOM 2005

[24] Open Network Laboratory, Washington University in St,
Louis, http://onl.arl.wustl.edu

[25] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P.
Hartke, J. Naous, R. Raghuraman, and J. Luo, “NetFPGA –
An Open Platform for Gigabit-rate Network Switching and
Routing,” IEEE International Conference on
Microelectronic Systems Education (MSE’2007), June 3 –
4, 2007, San Diego, CA., USA

[26] NetFPGA official homepage, http://yuba.stanford.
edu/NetFPGA/, as of Feb. 1, 2008

