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ABSTRACT 

Data storage is one of the most profitable applications in 
Clouds. Although a transparent service model is 
convenient, it may be subject to the loss of data integrity. 
Our study revealed vulnerabilities in some commercial 
Cloud storage services. We analyzed the repudiation 
problem in a Cloud environment. In this paper, we 
propose a new multi-party non-repudiation (MPNR) 
scheme to fix the issue. Rationale behind the new scheme 
and a description of its operation are provided. We also 
discussed its robustness against typical network attacks.  
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1. INTRODUCTION 

Storage of data is potentially the most profitable 
application in the Cloud. Given this large potential profit 
for such services, cloud storage service providers attempt 
to persuade their users to store important and sensitive 
data to Cloud. They often advertise the convenience that 
this new business model offers to users.  
 
A number of consultants and security agencies, however, 
have issued warnings concerning security threats in Cloud 
models [12] Potential users are left to wonder whether the 
confidentiality, integrity, and the availability of their data 
are guaranteed in Cloud Storage. Just as no one would 
want to put his valued possessions in a house without a 
secure lock, users are reluctant to move important and 
sensitive data to Cloud until these challenges have been 
well addressed. Therefore, to date this potentially valuable 
service model is still not widely accepted.  
 
In addition, some user concerns cannot be alleviated by 
simply developing new technologies. There is naturally 
some psychological anxiety when a user is faced with the 
decision to store sensitive data in a location that is out of 
his control. In fact, some problems require more than 
conventional cyber security mechanisms and introduce 
new security challenges. Research in Cloud storage 
security is far from mature, and traditional cyber security 

solutions cannot provide enough protection in the Cloud 
for other reasons [25] . 
 
Meanwhile, the uniqueness of secure Cloud storage still 
has not been fully understood. For example, one 
characteristic of Cloud Storage is mass storage in which 
data is communicated not only through the Internet, but 
also can be shipped by couriers or by other means if the 
size of data is huge, e.g. 1TB. Time is not a deterministic 
factor. 
 
In this paper, we investigate current commercial Cloud 
storage platforms [29] [30] and some proposed 
architectures and approaches for secure Cloud storage. As 
discussed in detail in Section 2, there still exist 
vulnerabilities that can potentially lead to disputation. To 
correct such weakness, we propose a new fair multi-party 
non-repudiation (MPNR) scheme for secure Cloud storage 
systems. We focus on how to ensure integrity with fair 
non-repudiation, not just how to maintain integrity itself 
since current integrity algorithms are sufficient. The idea 
of integrity checks and non-repudiation is not new. Using 
traditional non-repudiation protocols, the receivers can 
decrypt the received data. This is not preferable for cloud 
storage. In cloud storage, the cloud provider is a hollow 
man-in-the-middle, it cannot access the content of data. 
Another issue is privacy, which is beyond the scope of this 
paper and interested readers are referred to reference [33]. 
 
The rest of this paper is structured as follows: Section 2 is 
related work. Section 3 presents the design of a new 
MPNR framework. Section 4 discusses the robustness of 
our scheme against typical malicious attacks. Finally, 
Section 5 summaries this paper.  

2. RELATED WORK 
We analyze vulnerabilities in today’s commercial Cloud 
storage systems first, which open the door for potential 
data integrity tampering and disputation problems. Then, 
an introduction to several secure architectures for Cloud 
storage platforms and security approaches adopted in these 
architectures are described. Finally we explain why a fair 
MPNR is needed in this context. 



 

 
Suppose there are three entities involved in Cloud storage, 
namely the data owner, the service provider and the users. 
The owner stores important or sensitive data to the Cloud 
and pays for this service. The service provider provides 
secure storage services and obtains profit. The users fetch 
data from Cloud storage and also pay for the service. Only 
the owner can decide and change the access control 
polices for his data. We also suppose that no party is 
trustworthy in the Cloud environment. That is, the owner, 
provider or users may deny their actions if doing so would 
compromise their interests, or they are willing to attack 
others if such behavior is beneficial to them. To date, no 
research has been done on fair non-repudiation for Cloud 
storage. Related work can be divided into three parts. 
 
Cloud storage is an application that covers a number of 
services (SaaS, PaaS, IaaS, etc) [22]. The lifecycle of data 
in Cloud storage can be divided into three phases: 
Uploading, Maintenance, and Downloading. While data 
integrity in the uploading and downloading phases is 
achieved by cryptographic protocols such as SSL (Secure 
Sockets Layer) or TLS (Transport Layer Security), it is 
more complicated for users to monitor integrity and 
availability of remotely. 
 
2.1 Existing Platforms for Cloud Storage 
 
There currently exist some Cloud storage platforms 
(Amazon S3, Microsoft Azure, etc.). For large blocks of 
data (> 1TB), service providers such as Amazon AWS [29] 
require data to be shipped on a storage medium (e.g. a 
hard drive) while some extra authentication/authorization 
information is delivered through email. For smaller blocks 
of data (≤ 50 GB), upload or download via the Internet is 
used, just as Microsoft Azure [29] does.  
 
Although the software may be different, a similar strategy 
has been used to provide data integrity (e.g. MD5 digest). 
As shown in Figure 1, when the owner uploads data into 
Cloud storage space, it can ship or send data to service 
providers with a digital digest, MD5_1. If the data is 
transferred through the Internet, a signed non-repudiation 
request could be used to ensure that data has not been 
tampered. 
 
When the service provider receives the data with a signed 

MD5, it stores data with the corresponding MD5_1. When 
the service provider gets a verified request to retrieve data 
from the users, it will send/ship the data with an MD5 to 
the user. On Amazon’s AWS platform, the original 
MD5_1 will be sent by the owner when uploading, and a 
re-computed MD5_2 is sent by AWS when downloading. 
In contrast, to provide data integrity, Microsoft’s Azure 
Storage Service stores uploaded data MD5_1 in database 
and returns it to the user when it wants to retrieve data [30]  
 
This procedure is secure in each individual session. 
Integrity and confidentiality of data during transmission 
are guaranteed by SSL protocol. However, from the 
perspective of Cloud storage, data security depends not 
only on uploading and downloading phases, but also on 
the maintenance phase. The Uploading phase ensures that 
data received by Cloud providers is the same as the owner 
uploads. The downloading phase guarantees that what the 
user retrieves is the same data the Cloud provider sends. 
Unfortunately, there is one critical link missing that is 
required to protect or track data stored in Cloud storage. 
 
2.2 Secure Cloud Storage Architectures 
 
Since Cloud storage is a service delivered over the Internet 
and hardware and system software provide the service, 
traditional distributed storage can be looked at as a 
specific case of Cloud storage. Security problems in 
distributed storage systems, such as authentication, 
authorization, availability, confidentiality, integrity, key 
sharing and management, auditing and intrusion detection, 
usability and performance, should also be considered in 
Cloud storage.  
 
Kher and Kim [17] presented a survey of existing secure 
storage systems and listed some solutions. However, 
Cloud storage systems have their own features. The Cloud 
Security Alliance’s report [31] lists 15 different issues and 
Chow et al [7] group them into three categories: 
traditional, availability and third-party control. Cachin et 
al [4] presented a brief survey of solutions to secure Cloud 
storage. They use a “provable data possession” (PDP) [1] 
model or a “proof of retrievability” (POR) [13] model for 
ensuring possession of a file during a maintenance phase. 
Such models and their derivatives can efficiently and 
sufficiently find gross omissions such as 1% data loss and 
are effective. They also use some protocols, such as 
SUNDR [18] to realize fork-consistent storage. 
 
Based on recent proposed non-standard approaches, 
Kamara and Lauter [15] described a secure Cloud storage 
architecture. They believe “confidentiality, integrity, 
availability, reliability, efficient retrieval, data sharing” 
services should be provided. In their architecture, there are 
four components: a token generator (TG) to generate 
indices that enable the provider to search data, a data 
processor (DP) to encrypt the data by some methods, such 

 
Figure 1. Illustration of potential integrity 

problem. 



 

as AES, searchable encryption, a data credential generator 
(CG) for an access control policy, and a data verifier (DV) 
to check integrity. In their architecture, Cloud storage 
providers are responsible for availability and reliability. 
DP is responsible for confidentiality. DV is responsible for 
integrity. CG is responsible for data sharing. TG is 
responsible for data retrieval. POR/PDP is responsible for 
proof of storage. 
 
Kamara’s work is useful for proving the integrity of data, 
but it is not perfect for a holistic Cloud solution. Raluca 
Ada Popa et al [25] presented architecture for secure 
Cloud storage. They divided the security properties of 
Cloud storage in four categories: confidentiality, integrity, 
write-serializability and read freshness. With signed 
messages and chain hash, the architecture can provide 
non-reputable and write-serializability property. Freshness 
is guaranteed by periodically auditing data. 
 
2.3 Security Issues for Cloud Storage 
 
Obviously current Cloud storage platforms can meet basic 
requirements of mass storage at a low cost. We can also 
enhance the security of Cloud storage using some of the 
methods mentioned above. Confidentiality and Integrity 
are achieved through robust encryption and Message-
Digest respectively. Non-repudiation is provided by the 
exchange of signed message-digests [8] Freshness is 
guaranteed by periodic audit. Write-serializability is 
supported by chain hash or persistent authenticated 
dictionary (PAD) [10] . SUNDR can be used to defend 
“fork consistency attack”. Broadcast encryption [3] and 
Key rotation [14] are used to improve scalability. 
 
It seems that security problems in Cloud storage systems 
are covered. Nevertheless, one of the crucial aspects of 
Cloud storage is that none of the three entities should 
always be trusted. Any one of them could be malicious. 
That is why non-repudiation is a key mechanism [25] in 
secure Cloud storages. 
 
However, although signed digests are used for non-
repudiation in Cloud storage [8] [25] , they did not 
consider “Fairness” too much. Fairness means that 
 
“no party gains an advantage over another at any moment 
during the running of the protocol. The protocol would not 
be fair, for example, if one of the parties obtained the 
signed contract without the other being able to do 
likewise” [21] .  
 
It is obvious that “Non-repudiation” in references [8] and 
[25] is not “fair” since any party can refuse to send his 
own certification after it receives the sender’s certification. 
Then non-repudiation method in references [8] and [25] is 
just the case 1 in [28] . This will lead to two problems: 
 

1. Space Consistency: How can a user ensure that the 
received data are the same as that the owner has 
uploaded earlier? Has it been tampered when stored in 
the cloud? 

 
2. Fairness: If a sender does not get any response from its 

peers, what can it do once disputation happens? 
 
Although PAD can be used to solve the consistency 
problem, it has an assumption that the users need to know 
the element in Cloud. SUNDR can also be used in the 
consistency problem. However, it still has two 
assumptions. At least one user has the correct updated data, 
and other users can communicate with the user and the 
user should be trusted. 
 
References [8] [9] [25] proposed a prototype. However, 
more details should be considered. Otherwise, such non-
repudiation protocol could be easily attacked [19] . Thus 
we propose a novel fair multi-party non-repudiation 
(MPNR) protocol for Cloud storage. 

3. A NEW MPNR PROTOCOL  
3.1 Notation and Definitions 
 
For a description of our fair non-repudiation protocol, 
some notation and definitions are used as follows: 
 
NRO: Non-Repudiation of Origin, which is held by the 

recipient and is intended to protect against the 
sender’s false denial of having originated the message 
by being presented to an arbitrator [27] who can 
unambiguously decide whether the sender is the 
author of a given message or not.  

 
NRR: Non-Repudiation of Receipt, which is held by 

sender and intended to protect against the recipient’s 
false denial of having received message by being 
presented to an arbitrator [28], who can 
unambiguously decide whether the recipient received 
a given message or not. 

 
Timeliness: This is achieved if and only if all honest 

parties always have the ability to reach, in a finite 
amount of time, a point in the protocol where they can 
stop the protocol while preserving fairness. 
Timeliness avoids situations where a party does not 
know whether it can stop the protocol without loosing 
fairness or not. A multi-party protocol is said to 
respect timeliness if all honest entities are able to 
terminate the protocol in a finite amount of time 
without losing fairness. 

 
L: Unique Label throughout the session. Here we suppose 

L is the hash of the data and the entities. 
 
Flag: Indicate the purpose of the step. 



 

 
EGB{}: any group encryption scheme that only recipients 

Bi∈B can decrypt it. NROOU is encrypted with group 
encryption scheme. We do not imply that is the only 
option. Different schemes can be used under different 
scenarios. For example, if there are fewer recipients, 
we can encrypt the NROOU with each recipient’s 
public key, add a label for location and concatenate 
them together. If there are many recipients, we can 
use other group encryption methods [6] . When user 
Bi downloads the data from the Cloud, it will decipher 
it using K, where K is the key for B to decipher the 
data. 

 
EX(M): asymmetric encryption of message M with party 

X’s public key. 
 
SX(M): signature of the message by party X, normally 

with X private Key. 
 
H(M): one-way hash function over the message M. 
 
X→Y: party X sends a message M to party Y. 
 
X↔Y: party X fetches a message M from party Y. 
 
3.2 The Fair MPNR Protocol 
 
This section presents a new MPNR protocol. To date, 
there are only two approaches for fair non-repudiation 
[14], [16], [20], [26]. One is gradual exchange, which is 
not practical. Another is Trusted Third Party (TTP), which 
is used in nearly all non-repudiation protocols. In 
traditional non-repudiation applications, four steps are 
required to finish the fair non-repudiation protocol. 
 
#1. A sender sends an encrypted message EK(M) to a 

recipient with an NRO. 
#2. The recipient responds with an NRR. 
#3. After the sender gets an NRR, it will send the key to 

the recipient with an NRO. 
#4. The recipient responds with an NRR. 
#5. An entity can initiate Resolve mode if it is needed. 
 

In this paper, owner and users are senders and we denote 
them “A” and “B”, respectively, and Cloud provider as 
recipient is denoted “C” The architecture is illustrated in 
Figure 3. In the new MPNR protocol, we still use a TTP to 
guarantee “Fairness” as illustrated in Figure 2(a). In 
addition to normal upload/download processes, Resolve 
mode guarantees that every party is able to complete or 
abort the execution of protocol, without being forced to 
wait for responses from other parties, who are potentially 
malicious or irresponsible. 
 

We assume communication channels between the peers 
and TTP are resilient and reliable. “Resilient” means 
messages will be eventually received. We also assume that 
generally all parties are willing to complete the 
transactions by themselves and the TTP is only required as 
a last resort. None of the parties acts against its own 
interests. For “Consistency”, the key idea is that in our 
MPNR protocol the provider is just like a hollow man-in-
the-middle. The rationale is to bridge the uploading and 
downloading data with a fair non-repudiation receipt 
through group encryption. Data from the owner to users is 
packed and encrypted. The provider can only check the 
integrity of packed data and decide whether users can 
access data according to an access list managed by the 
owner. The provider cannot know the content of data and 
cannot tamper data, as in Figure 2(b).  
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Figure 2. MPNR for Cloud Storage. 
 
The MPNR has two modes: Normal mode and Resolve 
mode. Normal mode needs two rounds: Uploading session 
between Owner and Provider and Downloading session 
between Users and Provider. Normal mode is similar to 
that in references [8] [25] It supposes the two peers are 
willing to exchange messages and non-repudiation 
evidence, and messages cannot be lost during transmission. 
If the sender failed to obtain non-repudiation evidence, it 
can invoke a Resolve mode through the TTP. 
 
3.2.1 Normal Mode 
A. Uploading Session: Owner <=> Provider 

A sender uploads data to Cloud and updates it later. 
 

In this step, Owner encrypts data with key K, generates 
two proofs of non-repudiation: NROOU and NROOC for the 
users and the Cloud provider respectively, where “OU” 
means the evidence is produced by the owner and will be 
stored by the user. “OC” has the similar meaning. NROOU 
is critical for multi-party communication. K is the key 
used to decipher the data. Users will verify the data 
integrity SA(H(DataToBeStored)) after they download 
data. The sender uses the group encryption scheme to 
guarantee that only the recipients in the B_list can 



 

decipher the NROOU. This signed hash is very critical 
since it makes up the missing link between the uploading 
and downloading sessions. Owner encrypts the NROOC 
with the provider’s public key and delivers the NROOC to 
the Cloud as the non-repudiation evidence. When the 
owner wants to update data or the user access list or abort, 
it just needs to modify the content of Request. The step is 
described as follows: 
 
Step 1: A => C; 
Request = {L, A, C, TTP, DataToBeStored, B_List, 

H(DataToBeStored), H(B_List), Seq, flag, Tg, 
T1, EGB{NROOU}, EC{ NROOC}} 

 
Where: 
NROOU := {K, L, SA(H(DataToBeStored))}, it is open to 

recipients but it is not open to Cloud service 
provider.  

 
NROOC := {SA(H(DataToBeStored), H(B), EGB{NROOU}, 

H(L, Seq1, f1, Tg, T1)}. NROOC is the evidence of 
non-repudiation.  

 
Seq1: represents the unique sequence number in each 

message. Each step must be unique throughout the 
whole transaction in order to prevent reply attacks. 

 
Tg: The time when the message is generated. It should be 

authenticated since all other timestamps are generated 
based on it. 

 
T1: The time limit for sender to wait for the NRR from 

recipient in Step 1. 
 
B_List, H(B_List): the list of authenticated recipients who 

can download and decrypt the data and its hash value.  
 
Step 2: C => A: 
Response = {L, A, C, TTP, H(DataReceived), H(B), Seq2, 

flag, Tg, T2, Ts, EA{NRRCO}}. 
 
Where: 
NRR : = SC(H(DataReceived)), SC{H(L, Seq, flag, Tg, T2, 

Ts, NROOC )}. 
 
Ts: The time when data is stored, it provides sender the 

evidence of data storage time. 
 
Once the message is received from the owner in Step 1, 
the Cloud storage service provider verifies the validity of 
L with A, C, and TTP, H. If valid, the service provider 
decrypts message with its private key and conducts further 
verification of the integrity of parameters in the Request. 
Then, the integrity of data will be checked. When all 
procedures are completed without any anomalies detected, 
the service provider sends NRR to sender before time is 
up. Otherwise, the service provider will respond with an 

ERROR message. On receiving the NRRCO, the owner 
verifies whether the hash of data H(DataReceived) is the 
same as what it has sent and validates the NRR. Then, the 
owner stores NRR for future. Otherwise, it initiates 
Resolve process.  
 
After the provider sends an NRR to the owner, there are 
two possibilities. One is that the message is lost and the 
owner cannot get the NRRCO. In such case, provider will 
get a request from TTP through Resolve mode. Otherwise, 
it means that owner gets and agrees to NRRCO. The 
uploading session ends. T2 should not be shorter than T1. 
 
B. Downloading Session: Users <=> Provider 
When any user wants to download data, it should send a 
request with non-repudiation evidence NROUC to the 
Cloud provider. The request includes the user’s identity. 
The provider will validate the request and verify whether 
the user is in the list of B that was previously sent by the 
sender. If it is, the data along with EGB{NROOU} will be 
sent to the user with provider’s non-repudiation evidence. 
 
When the user gets data and EGB, it will obtain K and 
H(Data) by decrypting EGB{NROOU} and check the 
integrity. Meanwhile, the user will also check the validity 
of the NRRCU. After the provider responds NRRUC to 
users, there are two possibilities. One is that message is 
lost and the owner cannot get NRRUC. In such case, 
provider will get a request from TTP through Resolve 
mode. Otherwise, it means that the owner gets and agrees 
to the NRRCU. The downloading session ends. T4 should 
not be shorter than T3. 
 
Now, the hash value H(DataToBeStored) between the 
owner and the users is exchanged through the Cloud 
provider without requiring extra channels, and it is hidden 
from Cloud provider. We use H(DataToBeStored) as the 
integrity link to guarantee the “Consistency”. 
 
Step 1: B => C; 
Request = Li, A, C, Bi, TTP, Seq3, flag, Tg, T3, 
EC{NROUC}. 
 
Where  
NROUC : = SBi{H(Li, A, C, TTP, Seq3, flag, Tg, T3)},  

Li := H(A, C, Bi, TTP) 
 

Step 2: C => Bi: 
Response = {L, A, C, Bi, TTP, DataRetrieved, 

H(DataRetrived), Seq4, flag, T4, EGB{NROOU}, 
EBi{NRRCU}} 

 
Where  
NRRCU := SC(H(DataRetrieved), SC{EGB(NROOU)}, 
SC{H(L, Seq4, flag, T4)}, and T4 is the time limit. 
 
3.2.2 Resolve Mode 



 

Anomalies do not necessarily lead to the termination of a 
transaction. The owner or user needs fair non-repudiation 
evidence. Thus, a process of error correction and/or 
anomaly resolution is required in this protocol. The sender 
sends the message identification and evidence to TTP to 
start a recovery process. TTP will transfer the request to 
the provider with a time limit. If the provider agrees to 
continue the process, it will return a message to TTP with 
NRR before time out. Provider also should restart the lost 
step 2. 
 
There are two possibilities for sender. One is that the 
recipient still refuses to respond. In such case, after time is 
out, TTP will generate evidence of NRR to sender. The 
Resolve session is done. Since the channel in Resolve 
mode is resilient and the TTP is trustable, the arbitrator 
would look at the NRR as the evidence. Another case is 
the recipient will respond the TTP and restart the step 2. 
After the sender receives NRR from the recipient, it will 
inform TTP and Resolve session is done. Figure 3 is the 
flowchart. 
 
3.2.3 Resolution of Disputation  
Having studied the behaviors of each party in the MPNR 
protocol, there are five typical possible disputations as 
summarized as follows: 
 
Case 1: Owner and users collude to blackmail the service 

provider. The owner stores some data in the Cloud 
first; then a user downloads the data. They claim 
that the data has been tampered and ask the service 
provider to pay the so-called loss. The service 
provider can easily prove his innocence by 
presenting the NROOC and NROUC. 

 
Case 2: The service provider has received the NRO but 

does not respond with a NRR in order to have 
some advantage over the senders. The senders can 
handle such type of activity by initiating a Resolve 
mode through the TTP. The service provider 
cannot get any advantage.  

 
Case 3: Consider the scenario where the provider wants to 

charge more service fees. When owner stores 
500GB data, but provider claims that it stored 1TB. 
The owner can verify the earlier transaction 
through NRRCO, and NROOC would not support 
the provider. Similarly, this evidence also helps 
the provider when the users try to deny the service 
fees. 

 
Case 4: There is the possibility that disputations happen 

between the owner and users. The owner can 
claim that a user has received the data but the user 
denies. The arbitrator can easily figure out the 
truth by the NRO and NRR. 

 
Case5: Our MPNR protocol is also helpful to deny access 

to unauthorized users. For instance, a client Bob 
claims that it has permission to access the data. 
This can be easily verified by checking the list of 
recipients with NROOC. 

 
3.3 Performance Discussion 
 
The proposed non-repudiation protocol is like the TCP/IP 
three-phase handshaking protocol. It is designed to 
exchange evidence in the data transaction, which removes 
ambiguities that lead to repudiations or disputations 
among users or between a user and service provider. 
Actually, all of the papers about on-repudiation focus on 
the protocol design, and there is no experiment for 
performance reported [1] ,[5] ,[16] ,[21] , [24] ,[26] . 
 
Moreover, Cloud storage is different from the traditional 
distributed storage. In the traditional distributed storage 
applications, data is normally exchanged through the 
Internet. For the cloud storage, however, since the data is 
often large in size, such as GB or TB volume, the 
bottleneck definitely lies on the uploading and 
downloading process.  
 
Therefore, current cloud storage services, such as S3, 
normally use the ship-method (e.g. FedEx) to solve the 
problem. Considered as the overhead, the time required 
for executing the protocol is very small compared to the 
time consumed by data transfer. For example, the time to 
compute the MD5 and SHA1 for 2GB is about 9s and 11s, 
but if we upload and download 2GB by internet, it can 
take up to half an hour or more.  
 
If we consider small data such as 20MB, the overhead is 
less than 512 Bytes, (< 128 bytes for MD5 or < 384 bytes 

 
Figure 3. Flowchart of Resolve mode. 



 

for SHA-512, occupy 1 sector for disk), the latency time 
should less than 13ms (ST32000641AS hard disk, 2TB, 
7200rpms, 64MB cache, seek time ~8.5ms, latency time ~ 
4.2ms).  
 
On the same computing power (Intel E8400, 3G RAM), 
considering the data transmission, the computational time 
depends on the data size. MD5/SHA-512 needs ~9s/12s 
for 2GB bytes because of different rounds (64/80 iterative 
steps). AES encryption for 2GB needs approximately 
180s. The signature generation time is about 100ms 
(ECDSA, ARM7TDMI, 50MHz) [32] . The total (needs 3 
DSA) is about 300ms.  
 
Data transmission time, which normally takes days or 
hours, is by far much longer than time required by other 
operations. For example, consider a data set of 2GB, the 
time for encryption is about 180s, time for Digital Digest 
is merely 12s, time for signature generation is only about 
300ms, and the latency time is about 13ms. Obviously, 
days/hours >> 180s >> 12s >> 300ms >> 13ms. 
 
Compared to shipping time, the protocol execution time is 
relatively trivial. Additionally, there are various factors 
that influence the performances including disk type, 
system architecture, algorithm, etc. Thus, we leave the 
experimental study of performance evaluation as our next 
step work considering the complexity. 
 
Additionally, the entities still need similar confidentiality 
and integrity operations even without the MPNR. The 
MPNR protocol adds a very small extra burden for each 
entity. 

4. SECURITY ANALYSIS 
The goal of non-repudiation is to enhance the security of 
Cloud storage and convince potential customers that the 
service is secure. Therefore, it is highly desired that the 
MPNR protocol is robust against various threats. In this 
section, we analyze the robustness of MPNR protocol 
under some general malicious attacks and some specific 
attacks for non-repudiation protocols. 
 
4.1 General Attacks 
 
Man-in-the-middle attack 
The Man-in-the-middle attack (MITM) [23] is a form of 
active eavesdropping in which the attacker makes 
independent connections with the victims and relays 
messages between them. The attacker can intercept all 
messages being exchanged between the two victims and 
inject new ones. However, an MITM attack can succeed 
only when the attacker can impersonate the end party. It 
can be prevented by authentication. In our MPNR protocol, 
authentication and digital signature are required for the 
purpose of eliminating disputation. Automatically, when 

the parties get the other’s public key, they should 
authenticate the validity against the MITM. 
 
Reflection Attacks 
A reflection attack [23] is a method that attacks a 
challenge-response authentication system that uses the 
same protocol in both directions. The protocol proposed in 
this paper is not a challenge-response authentication 
system. Furthermore, each message contains a unique 
identifier, and thus the reflection attack can be avoided. 
 
Interleaving Attacks 
The interleaving attack [23] is similar to the man-in-the-
middle attack, but it can attack the protocol in which all 
parties have authentic copies of all others’ public keys.  
Interleaving attack can possibly succeed when there are 
several rounds to exchange key and the to-and-from 
messages are symmetrical or the symmetric key 
establishment is on the shared session key. In this protocol, 
the message is not symmetrical and binding with a unique 
sequence number, and each session is finished only in one 
round. Therefore, the interleaving attack cannot threaten 
the MPNR protocol. 
 
Replay Attacks 
Replay attack [23] is a network attack in which a valid 
data transmission is maliciously or fraudulently repeated 
or delayed. This is carried out either by the sender or by an 
adversary who intercepts the data and retransmits it.  
 
The replay attack can be defended by the use of challenge-
response techniques and by embedding the target ID party 
in the response or the timestamp. In our protocol, we use 
unique sequence number with the sender signature to 
avoid the attack. For example, an adversary Eve has 
intercepted the message and replayed it to TTP. Even 
though it can modify the SeqN in the plain text; the hash 
value that has been encrypted by the sender’s private key 
cannot be tampered without being detected. 
 
4.2 Specific Attack 
 
Timeline attacks 
Timeline attacks are typical in non-repudiation protocols. 
In fairness, each party can stop the execution after a pre-
fixed time out. In this protocol, the Tx field is used in each 
message to limit the reception time of a message. Thus, 
when a party receives a message, it will check the validity 
of the Tx with the actual time. If it is invalid, the party 
discards the message and initiates the resolve mode. 
However, simply grafting some note of expiry may also 
cause trouble. Consider the following protocol [28] : 
 

Step Acts Parameters 
1 A=>B B,L,T,C,NRO 
2 B=>A A,L,NRR 



 

3 A=>TTP B,L,T,K,sub_K 
4 A<=>TTP A,B,L,T0,K,con_K 
5 B<=>TTP A,B,L,T0,K,con_K 

 
Step 4 and step 5 can be conducted concurrently. Since T 
is the time limit on the TTP's clock and T0 is the time that 
the confirmed key has made available to the public, it 
remains so until time T. However, party A can delay step 
3 up to the last moment before T, so that it can perform 
step 4 while standing a good chance that B might 
subsequently miss step 5 [19] . 
 
Another example is shown below by adding a time limit. 
Where B adds a time limit T1 in step 2, T1 < T. B wants A 
to perform step3 before T1 to avoid the problem above. 
When there is repudiation, the adjudicator checks that T0< 
T1< T. But, since TTP does not know T1, B can give time 
limit T1 < T0. After B gets K and the decrypted message, 
it claims that the protocol execution is invalid [16] . 
 

Step Acts Parameters 
1 A=>B B,L,T,C,NRO 
2 B=>A A,L,T1, NRR 
3 A=>TTP B,L,T,K,sub_K 
4 A<=>TTP A,B,L,T0,K,con_K 
5 B<=>TTP A,B,L,T0,K,con_K 

 
In our MPNR protocol, this attack is not possible since 
there is only one round in one session, and no one can get 
an advantage over another. Additionally, in each step, the 
party tracks the time limit clearly. 
 
Reuse of ETTP(K) 
In one non-repudiation protocol [20] , sub_K contains 
only items sent as parts of the first message. In particular 
it contains ETTP (K). Thus B can reuse ETTP (K) in a 
different protocol run with B’ and produce a valid sub’_K 
that consists of SB(fsub, B’ ,L’ ,ETTP(K)), where L’ is a new 
random label.  
 
By using this sub’_K together with appropriate EOO’_C 
and EOR’_C values in the resolve sub-protocol, B gains K 
and thus learns the message M. A cannot receive any 
evidence of receipt for this message, as A has only enough 
information to run the abort sub-protocol.  
 
But as B executes the resolve sub-protocol under a 
different label L’, the attack always succeeds. Thus, the 
protocol is unfair for A (assuming that knowledge of M is 
valuable information for B) [11] . This type of attack 
would have no impact on our MPNR protocol since there 
is no need to generate a valid sub_K. 
 
Reuse of Labels and Keys 

In some protocols, labels are equivalent to H(Data, K) and 
are unique. However, B cannot know the Data until the 
last step. This property implies that B can only check the 
validity of L in the last step. Under certain situations, TTP 
also cannot check the validity of L since TTP never gets 
the message for confidence.  
 
For example, A can initiate the protocol with data M’ but 
using the wrong label L = H(M, K). B cannot verify its 
validity until the last step. Therefore A can receive 
evidence of receipt for K from B if B forgets to check the 
label or from TTP since TTP cannot check the label at all. 
When B detects the error and initiates the resolve process, 
TTP may reject its request since A has aborted the 
transaction already. Such an attack cannot threaten the 
MPNR protocol since each party can check the validity of 
the Label in every step. TTP can also check the validity of 
the Label of each step. 
 
Wrong sub_k Attacks 
This attack is special to certain NR protocols. Let’s 
consider the NR protocol proposed in. If A sends a wrong 
ETTP(K), the resolve protocol has to stop with an error 
when it is initiated by B. Then it prevents B from 
terminating the transaction. However, A can construct a 
resolve request with the correct encryption of the key and 
then A can complete the protocol at any time.  
 
In our MPNR protocol, the attack is not feasible since TTP 
only checks the consistency in the resolve mode and it is 
the responsibility of A and B to decide the result of the 
resolve procedure. If the sender sends a wrong message, 
the message cannot reach the other party and the sender 
cannot take any advantage. 

5. CONCLUSIONS 
This paper reports our work on data security in Cloud 
storage. We have revealed the existing vulnerability in 
Cloud storage due to the missing connection between the 
robust uploading and downloading phases. We proposed a 
new MPNR protocol that is specifically designed for the 
Cloud storage environment. This protocol can enhance the 
security of Cloud storage and make it more reliable for 
potential consumers. 
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