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Abstract—The shrew Distributed Denial of Service (DDoS) 

attacks are periodic, bursty, and stealthy in nature. They are also 
known as Reduction of Quality (RoQ) attacks. Such attacks could 
be even more detrimental than the widely known flooding DDoS 
attacks because they damage the victim servers for a long time 
without being noticed, thereby denying new visitors to the victim 
servers, which are mostly e-commerce sites. Thus, in order to 
minimize the huge monetary losses, there is a pressing need to 
effectively detect such attacks in real-time.  

Unfortunately, effective detection of shrew attacks remains an 
open problem. In this paper, we meet this challenge by proposing 
a new signal processing approach to identifying and detecting the 
attacks by examining the frequency-domain characteristics of 
incoming traffic flows to a server. A major strength of our 
proposed technique is that its detection time is less than a few 
seconds. Furthermore, the technique entails simple software or 
hardware implementations, making it easily deployable in a 
real-life network environment. 
 

Index Terms— Network security, distributed denial of service 
(DDoS), reduction of quality (RoQ), digital signal processing 
(DSP), Internet traffic analysis  
 

I. INTRODUCTION 
ISTRIBUTED Denial of Service (DDoS) attacks have 
become one of the major threats to Internet services and 

electronic transactions [5], [22], [26]. A typical DDoS attack 
prevents legitimate users from accessing the victim for certain 
services. The network resources could be denied by 
overwhelming the target with a huge amount of traffic flows 
launched through multiple Zombies. Essentially, such kind of 
attacks is targeting at undermining the availability of certain 
systems or services. DDoS attacks degrade the performance of 
the networks even though the links are not saturated [19].  
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As of now, there is no “silver bullet” against DDoS attacks 
although a plethora of research efforts has been injected into 
this area. A traditional DDoS attack can be characterized as 
brute-force, sustained high-rate, or specifically designed to take 
advantages of the protocol limitations or the software 
vulnerabilities.  

Recently, a variant category of DDoS attack has been 
identified. This novel type of attack, with a low average rate, 
exploits the transient phases of a system’s dynamic behavior. 
Such low-rate attacks introduce significant inefficiencies that 
tremendously reduce system capacity or service quality, yet 
exhibiting a stealthy behavior. In the literature, this kind of 
attacks is referred to as shrew attacks [17] or Reduction of 
Quality (RoQ) attacks [12], [13].  

Comparing to traditional DDoS attacks, which are flooding 
in nature, shrew attacks are much more difficult to be detected. 
Therefore, they can damage the victim for a long time without 
being noticed [13]. Such a prolonged period of damage, if 
occurred on an e-commerce Web site (e.g., Amazon.com), can 
transparently repel new commercial transactions or frustrate 
existing customers. Significant monetary losses would then 
result from these attacks.  

Unfortunately, it has been proven theoretically and 
experimentally that countermeasures developed for traditional 
DDoS attacks are ineffective in fighting against shrew attacks 
[13], [17], [21]. Furthermore, being “masked” by the 
background traffic, shrew attacks are very difficult to be 
identified in the time domain, which is the usual avenue of 
defense in combating network attacks. 

Several security researchers have explored the usage of 
digital signal processing (DSP) and other signal analysis 
techniques for traffic analysis in network security control [1], 
[2], [4], [14], [15], [16], [24].  Luo and Chang [20] studied the 
characteristics of shrew attack with a wavelet approach. Sun, et 
al. [27] suggested detecting shrew attacks via a dynamic time 
wrapping (DTW) technique. Unfortunately, none of these 
defense schemes could identify and filter out the attack streams 
effectively and accurately.  

Previously, we proposed an algorithm named HAWK [18] 
(Halting Anomaly with Weighted choKing) that works by 
judiciously identifying malicious shrew packet flows using a 
small flow table and dropping such packets decisively to halt 
the attack such that well-behaved TCP sessions can re-gain 
their bandwidth shares. One drawback of HAWK is its 
insensitivity to distributed shrew attacks.  
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In this paper, we propose a novel approach to filtering out 
shrew attack flows by analyzing the amplitude spectrum 
distribution in the frequency domain. Taking samples of packet 
arriving rate as the time-domain signal, followed by 
transforming it into frequency domain by DFT (Discrete 
Fourier Transform), we construct a filter by using the 
hypothesis-test theory. Based on analysis of more than 10,000 
simulation test points, our detection achieved a confidence 
interval of 99.9% (with error level ±3.29σ). 

Specifically, we make the following contributions: 
1. Using a hypothesis test theory and Gaussian 

distribution model, we show that our shrew-filtering 
algorithm achieves pretty higher accuracy. Thus, our 
scheme blocks malicious shrew flows with high 
confidence level (> 99.9%), while exhibiting low 
probability (< 0.1%) in losing legitimate TCP flows.  

2. One of the distinct advantages of our approach is that 
DFT and frequency-domain analysis are standard 
DSP methods that could be implemented efficiently 
in hardware, thanks to the modern VLSI technology. 
Thus, our shrew-filtering algorithm would not incur 
much overhead in routers since the whole processing 
could be carried out in fast hardware, while the 
routers perform their normal routing operations.  

3. Another advantage of shrew-filtering algorithm is to 
cut off the malicious shrew streams totally, which is 
similar to our MAFIC algorithm [6] that block 
flooding DDoS flows. In this manner, we minimize 
the damages of shrew streams on legitimate flows. 

The rest of this paper is organized as follows. In Section 2, 
we present the rationale of this work. With introduction of 
shrew attack and a discussion of frequency domain properties 
of the shrew streams and TCP flows, we set up our hypothesis 
test framework and determine the optimal detection threshold. 
Section 3 introduces our simulation setup and performance 
matrices. Simulation results and performance analysis are 
given in Section 4. Finally we conclude in Section 5. 

II. THE PROPOSED SHREW FILTERING ALGORITHM 
We first introduce the fundamentals of shrew attack. Then, 

we compare its frequency domain properties with legitimate 
TCP flows. Based on their differences, a hypothesis test 
framework is set up and the optimal detection threshold will be 
chosen. In the last subsection, we present in detail our novel 
shrew-filtering algorithm for cutting off shrew attack flows. 

A. Overview of Shrew Attacks 
The earliest case of low-rate TCP-targeted DDoS attack was 

reported in 2001. But it had not been studied thoroughly until 
Kuzmanovic and Knight [17] pioneered the work in identifying 
and characterizing such type of attacks. They studied the 
rationale of the shrew attack and analyzed the critical 
parameters that affect the efficiency on TCP flows. They also 
indicated the limitation of currently available DDoS defense 

mechanism. However, they have not proposed any efficient 
countermeasures against the low-rate attacks.  

As shown in Fig. 1, a single source shrew attack is modeled 
as a square waveform packet stream with an attack period T, 
length of the burst L, and the burst rate R. The period T is 
calculated by the estimated TCP RTO timer implementations at 
legitimate sources. During the burst with a peak rate R, the 
shrew pulses create a bursty but severe congestion on the links 
to the victim. The legitimate TCP flows will decrease their 
sending rate as defined by the rate-limiting mechanism that cuts 
the window size and adapts to the network capacity.  

For higher throughput, the TCP protocol uses a predefined 
value of RTO with a fixed RTO incrementing pattern [25]. The 
shrew attacks take advantage of this RTO recovery feature by 
adjusting the attack period to match with the RTO period. The 
feature causes the shrew attack streams to occupy the link 
bandwidth periodically by sending pulses (Fig. 1). This makes 
the legitimate TCP flows always “see” heavily burdened links. 
Such legitimate TCP flows may undergo a congestion control 
and reduce their rates significantly.  

A successful shrew attack may occupy bandwidth lower than 
10% of the legitimate TCP flows [17]. Such kind of periodic 
pulses is very difficult to detect by traffic management 
algorithms and by methods based on existing traffic volume 
analysis at the time domain. This is because the average share 
of bandwidth consumption is not very high.  

In distributed scenarios, attacks launched by multiple 
zombies could lower their individual traffic rates even further, 
thereby making detection much harder. As shown in Figs. 1(b) 
and 1(c), the distributed attack sources could decrease its 

 
(a) Single shrew attack stream 

 

 
(b) Two shrew attack streams with the same  

period and half burst rate 
 

 
(c) Two shrew attack streams with doubled  

period and same burst rate 

Fig. 1.  An illustration of various types of shrew attack streams. 
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average traffic rate either by lowering the peak rate or using 
longer attack periods. Detecting the signs of such attacks using 
traffic time series in time domain is therefore ineffective. 

B. Analysis of Amplitude Spectrum Distribution 
Although it is very challenging to detect and respond to the 

low-rate attacks using defense measures developed against 
DDoS attacks, the periodicity itself provides a clue for 
developing new defense mechanism [8]. Periodic signals and 
non-periodic signals present different properties in frequency 
domain. These variants could be detected conveniently using 
signal processing techniques.  

We take the number of arrived packets as the signal and 
sample it every 1 ms. At each step, we sample the number of 
arrived packets x(n). Then we convert the time-domain series 
into its frequency domain representation using DFT (Discrete 
Fourier Transform) [3]: 
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Figure 2(a) shows the normalized amplitude spectrum of a 

shrew attack and Fig. 2(b) is that of a legitimate TCP flow. 
Nyquist sampling theorem [3] indicates that the highest 
frequency of our analysis is 500 Hz.  

Comparing to the single TCP flow, more energy of shrew 
pulse stream appears in lower frequency bands. This property is 
more profound in Fig. 2(c) that zooms into the low frequency 
band of [0 Hz, 50 Hz].  

Based on observing the normalized amplitude spectrum, we 

find that it is feasible to design a detection algorithm by 
comparing their energy density in the low frequency band from 
0 Hz to 50 Hz. The difference between the summations of 
amplitude in this range could be large enough to segregate 
shrew pulse streams from the legitimate TCP flows.  

Fig. 3(a) compares the normalized cumulative amplitude 
spectrums (NCAS) of TCP and shrew flows, and Fig. 3(b) 
zooms into the low frequency band of [0 Hz, 50 Hz]. It is 
around the frequency point of 20 Hz that the distance of the two 
curves is the maximum. As such, we call this point as the 
K-point. It is also the ending point of the first peak of amplitude 
spectrum curve of shrew pulse in Fig. 2(c).  

Actually such a lower frequency band biased energy 
distribution could be used as the signature of low-rate shrew 
attacks. Since the shrew attack streams are aiming at the 
dynamic deficiency in the RTO mechanism of TCP protocol 
while trying to minimize the average bandwidth utilization, 
they have to construct congestions periodically at the moments 
when victims are recovering from RTO.  

This implies that if an attacker would like to blur the 
signature, he has to input more packets into the network at other 
time points. This will increase the bandwidth occupation and 
thus destroy the stealthy nature of low-rate shrew attacks. We 
need a rule to identify the signature and make the decision on 
when a cumulative amplitude spectrum value at the K-point has 

(a) Single shrew stream                           (b) Single TCP flow 
 

 
(c) Comparison in low frequency band 

Fig. 2.  Normalized amplitude spectrum of the shrew  
pulse stream and of the TCP flow. 

 
(a) On the whole frequency band 

 

 
(b) On the low frequency band 

 
Fig. 3. Normalized cumulative amplitude spectrum  

of the shrew stream and of the TCP flow. 



Paper #1568965962 4

been calculated. Since there are two choices, the binary 
hypothesis test [11] appeals to this application. 

C. Hypothesis Test Analysis 
Since noise signals existing in communication channels and 

introduced in the sampling process are random, we need to 
confirm statistically that the variation of NCAS at the K-point 
is limited in such a range that allows us to distinguish shrew 
pulse streams from TCP flows with high confidence.  

Fig. 4(a) presents the normalized histogram of NCAS’ 
distribution at the K-point. Both TCP and shrew streams’ data 
are calculated in a sample space of more than 8,000 data points. 
The statistics of TCP and shrew streams are given below: 
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According to Central Limit Theorem that given a distribution 

with a mean µ and variance σ2, the sampling distribution 
approaches a Gaussian (Normal) distribution [11]. Thus, we 
can describe the distribution of NCAS at K-point using 
Gaussian distribution model:  
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Fig. 4(b) is the Normal Distribution curves of TCP flow and 

shrew pulse stream. In detection theory, 3σ Error Level could 
give us a confidence interval of 99.7% [11], meaning that error 
level of ±3σ is good enough even in high precision detection 
scenarios. Table I lists the confidence levels of TCP and shrew 
streams and their corresponding threshold settings.  

Fig. 4(b) presents that the distance between distribution 
curves of TCP and shrew flows is larger than ±3.29σ. As 
indicated in Table I, the detection threshold at K-point could be 
safely selected to be 0.3 and this choice ensures us with 
confidence interval larger than 99.9%.  

In other words, the probability of cutting off a TCP flow as 
shrew stream or vice versa is lower than 0.1%. This shows that 
our hypothesis detection approach achieves pretty high 
accuracy and precision. The algorithm of our detection process 
is specified below in pseudo code: 

 
Hypothesis Detection Algorithm: 

01:  While shrew filtering algorithm is on 
02:      While sampling is not done 
03:          Continue sampling packets number per 1ms 
04:       Convert the time-domain series into frequency domain 
05:       Calculate the NCAS value at K-point 
06:       If NCAS ≤ Threshold Then 
07:           Mark the flows as legitimate 
08:       Else 
09:           Mark the flows as shrew flow 

 
D. Shrew-Filtering Algorithm 
Based on the hypothesis test, we proposed an algorithm to 

cut off flows with NCAS value at the K-point higher than the 
detection threshold. Although the source IP addresses are 
generally spoofed in attack packets, it is safe to use the 4-tuple 
{Source IP, Source Port, Destination IP, Destination Port} as 
the traffic flow labels.  

To minimize the storage overhead incurred by the extra data 
structures needed, we store only the output of a hash function 
with the label as the input instead of the label itself. Our 
shrew-filtering algorithm drops malicious packets using the 
data structures:  Permanent Drop Table (PDT), Suspicious 
Flow Table (SFT) and Nicely-Behaved Flow Table (NFT) as 
shown in Fig. 5.  

 
(a) Normalized histogram 

 

 
(b) Gaussian distribution curves 

 

Fig. 4. Normalized NCAS distribution of the shrew stream 
 and of the TCP flow at the K-point. 

TABLE I 
GAUSSIAN DISTRIBUTIONS’ CONFIDENCE LEVELS 

 

Error 
Level 

Prob. 
That 

Error Is 
Smaller 

Prob. 
That 

Error Is 
Larger 

TCP 
Threshold 

Shrew 
Threshold 

±σ 68% ~1:3 0.1311±0.026 0.4985±0.038 
±1.65σ 90% 1:10 0.1311±0.043 0.4985±0.046 
±1.96σ 95% 1:20 0.1311±0.051 0.4985±0.074 

±3σ 99.7% 1:370 0.1311±0.078 0.4985±0.114 
±3.29σ 99.9% 1:1000 0.1311±0.086 0.4985±0.125 
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Fig. 5. The shrew-filtering algorithm for dropping malicious packets. 
(NFT: Nicely-Behaved Flow Table, SFT: Suspicious Flow Table, PDT: 
Permanent Drop Table, NCAS: Normalized Cumulative Amplitude Spectrum) 

 
If an incoming packet label is in NFT, this packet is routed 

normally. If it is in PDT, this packet is dropped. If in SFT, we 
continue sampling until timer out. If there is no matching in any 
table, this packet belongs to a new flow and it would be added 
into SFT, then sampling begins and timer starts.  

Once timer is expired for certain flow, we convert the 
time-domain series into its frequency domain representation 
using DFT, and compare its NCAS at K-point with detection 
threshold. If its NCAS value is lower than the threshold, we 
move its record into NFT. All further incoming packets in this 
flow will be routed normally. If the NCAS value is higher than 
the threshold, we cut off these flows into PDT. 

III. NS-2 SIMULATION SETUP 
We have implemented the shrew-filtering algorithm in the 

NS-2 simulator, which is a widely recognized packet level 
discrete event simulator [23]. A subclass of connector named 
ShrewFilter is added to the head of each SimplexLink. A 
TrafficMonitor is coded into the simulator to compute the 
traffic matrices. The ShrewFilter is used to process the sample 
array and to calculate the NCAS of flows leading to the victim. 
Then, the PDT or NFT entries are set accordingly. The system 
configuration of the simulation scenario is shown in Fig. 6. 

 
Fig. 6.  The simulation scenario and experimental setting. 

 
Our simulation consists of a variety of Internet traffic 

patterns. Multiple scenarios are studied including single TCP 
flow vs. single shrew flow, single TCP flow vs. distributed 
shrew flows, multiple TCP flows vs. single shrew flow, and 
multiple TCP flows vs. distributed shrew flows. The distributed 
attack patterns include the cases shown in Figs. 1(b) and 1(c). 
Our notation used in the simulation is listed in Table II. 

 
TABLE II 

DEFINITION OF NOTATION 
 

Symbol Definition 
T 
R 
L 

NS 
NT 
ρ 
τ 

Attack Period (sec) 
Attack Pulse Peak Rate 
Attack Pulse Burst Length (sec) 
Number of Shrew Flows 
Number of TCP Flows 
Normalized TCP Throughput 
Response Time 

 

IV. SIMULATION RESULTS AND ANALYSIS 
We compared the results of our shrew-filtering algorithm 

with the well-known active queue management (AQM) 
algorithm Drop Tail. We also examined the response time 
performance of our algorithm since it determines the duration 
of damage to a victim site.  

A. Normalized Throughput 
Our NS-2 simulations are carried out with the topology 

shown in Fig. 6 for different combinations of legitimate TCP 
flows and shrew attack streams. We compared the TCP 
throughputs achieved by the shrew-filtering algorithm and the 
Drop Tail algorithm using the comparison metric normalized 
throughput (ρ), which is defined as the ratio of average 
throughput achieved by the TCP flow(s) with DDoS stream to 
the throughput achieved without DDoS streams.  

The normalized throughput indicates the severity of the 
damage that the shrew streams have done to the performance of 
legitimate TCP flows. The lower the normalized throughput is, 
the greater the damage. In our simulations, we consider the link 
capacity of the last hop to the victim as 2 Mbps. 

Since all TCP variants are equally vulnerable to shrew DoS 
stream of 50 ms or higher [17], we use TCP-Reno for the 
purpose of experiment. The sources of the shrew attack streams 
are illustrated at the top left of Fig. 6. Their delay is a random 
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variable uniformly distributed within (60 ms, 120 ms).  
We start with single shrew-stream scenarios. Fig. 7 compares 

the throughputs of TCP flows using the Drop Tail scheme and 
our shrew-filtering algorithm. The x-axis is the attack period 
and the y-axis is the normalized throughput TCP flows 
achieved. Fig. 7(a) shows the scenario of single TCP flow 
under attack of single shrew stream modeled in Fig. 1(a). Fig. 
7(b) corresponds to the scenario of five TCP flows under attack 
from a single shrew stream.  

It is clear that under the Drop Tail algorithm, the throughput 
of legitimate TCP flows is far below the actual attainable 
throughput and the link utilization is very inefficient. With our 
shrew-filtering algorithm, the gain in TCP throughput is 
significant. It reaches what legitimate flows can reach when 
there is no shrew stream. Our hypothesis test model can 
identify shrew streams with a high confidence level. We filter 
out shrew streams before they hurt the legitimate flows.  

Distributed shrew streams are hard to be detected because of 
their much lower average traffic rates. Simulations are carried 
out using four shrew streams that are distributed in either space 
domain (Fig. 1(b)) or time domain (Fig. 1(c)), respectively. 
Again, we studied their effects on single and five legitimate 
TCP flows. Fig. 8 presents the case where shrew streams are 
distributed in space but synchronized as in Fig. 1(b). Four 
shrew streams are from four difference sources with the same 
attack periods and the same burst lengths. However, their peak 
rate is only R/4. This means that their average traffic rate is 
only 1/4 of that of the single source attack.  

 

 

(a) Single TCP flow                             (b) Five TCP flows 

Fig. 8. Normalized throughput of TCP flows vs.  
4 spatially distributed shrew attack flows. 

 

Fig. 9 compares the throughputs of TCP flows under the 
Drop Tail algorithm and our shrew-filtering algorithm in the 
case that shrew streams are distributed in time fashion but 
synchronized as in Fig. 1(c). Four shrew streams are from four 
difference sources with the same peak rates and the same burst 
lengths. However, their attack periods are 4T. This distribution 
makes the interval between pulses four times longer to bring 
down the average traffic rate to 1/4 of that of the single source 
attack pulse stream.  

These results show that our shrew-filtering algorithm is 
indeed capable of recognizing distributed shrew streams with 
lower average traffic rate. This is one major advantage of 
frequency spectrum technique over bandwidth utilization 
analysis. Even if the shrew streams were launched from more 
zombies to further lower their average bandwidth utilization, 
their frequency spectrum would possess the same properties.  

In other words, the shrew-filtering mechanism is effective 
even if the attack is launched through larger number of streams 
with lower burst peak rate. In fact, if zombies use longer 
individual attack periods, higher percentages of its energy will 
be located in the low frequency band we are monitoring. 

B. Response Time 
The response time is a critical parameter to evaluate the 

performance of our shrew-filtering algorithm. In general, the 
time a DDoS defense algorithm takes to detect whether 
malicious flows exist or not is used a measure to monitor the 
traffic conditions. The time is varied according to the traffic 
load on the link.  

However, the load on the link does not affect the response 
time of our shrew-filtering algorithm. Results in Section 4.1 
show that the performance of the shrew-filtering algorithm is 
coherent under different traffic conditions, where we used the 
same 5-second sampling time. 

The effects of variant sampling length are determined by the 
signal’s periodicity. If the sampled sequence presents similar 
frequency characteristics of original signal, then the variance of 
sampling time will not impact on our detection precision.  

Fig. 10(a) presents the distributions of NCAS at the K-point 
of TCP flows and shrew streams. They are sampled from 1 
second to 5 seconds. As the sampling time decreases, the 
NCAS at the K-point of TCP flows scatters wider. Therefore, 

(a) Single TCP flow                             (b) Five TCP flows 
 

Fig. 7. Scenarios of TCP flows under single shrew attack. 

(a) Single TCP flow                             (b) Five TCP flows 
 

Fig. 9. Normalized throughput of TCP flows vs. 
4 timely distributed shrew attack flows. 
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the probability of treating a legitimate TCP flow as shrew 
stream increases. However, the distributions of NCAS at the 
K-point of shrew streams are pretty stable. If we stick on the 
threshold of 0.3, the high detection confidence level is 
maintained even the sampling time decreases to 3 seconds.   

Table III shows the confidence levels of different sampling 
times. We observe ±1.96σ (95%), ±3σ (99.7%) and ±3.29σ 
(99.9%) error levels of TCP and shrew streams. When 
sampling time (the response time τ) is longer than 2 seconds, 
there is no overlap between the ±3.29σ error level ranges of 
TCP flow and shrew stream. Therefore, the confidence level of 
detecting and filtering shrew streams is very high (99.9%) 
while τ ≥ 2 seconds.  

With τ = 1 second, we observed an overlap in both ±3σ and 
±3.29σ error ranges, but no overlap for ±1.96σ error level. This 
implies that information carried by sampled signal series 
cannot separate TCP flows from shrew streams with such a 
high confidence level (99.7%). However, the shrew-filtering 
algorithm still could respond to the shrew attacks in 1 second. 
We cut off it with little sacrifice in confidence level (95%). 
Figure 10(b) shows the throughput of five TCP flows under the 
attack of four distributed shrew streams. Clearly, all sampling 
series achieved much higher throughput than the Drop Tail 
algorithm. 

 

TABLE III 
CONFIDENCE LEVELS OF DIFFERENT SAMPLING TIMES 

 
 Sampling 

Time 1 Second 2 Second 3 Second 

TCP Flow 0.1614±0.176 0.1445±0.094 0.1327±0.067 ±1.96σ/
95% Shrew 

Stream 0.5036±0.050 0.4690±0.061 0.4508±0.067 

TCP Flow 0.1614±0.270 0.1445±0.144 0.1327±0.102 ±3σ/ 
99.7% Shrew 

Stream 0.5036±0.076 0.4690±0.093 0.4508±0.103 

TCP Flow 0.1614±0.296 0.1445±0.158 0.1327±0.112 ±3.29σ/
99.9% Shrew 

Stream 0.5036±0.083 0.4690±0.102 0.4508±0.113 

 Sampling 
Time 4 Second 5 Second  

TCP Flow 0.1258±0.078 0.1131±0.051  ±1.96σ/
95% Shrew 

Stream 0.4479±0.074 0.4985±0.074  

TCP Flow 0.1258±0.120 0.1131±0.078  ±3σ 
/99.7% Shrew 

Stream 0.4479±0.112 0.4985±0.114  

TCP Flow 0.1258±0.132 0.1131±0.086  ±3.29σ/
99.9% Shrew 

Stream 0.4479±0.123 0.4985±0.125  

V. CONCLUSIONS 
In this paper, we have proposed to cut off low-rate 

TCP-targeted DDoS attack flows using the periodicity 
properties of different flows in the frequency domain. Our 
analysis and simulations show that more energy of low-rate 
shrew attacks is located in the lower frequency band, 
comparing with the legitimate TCP flows.  

There is one limitation in our shrew-filtering scheme. It is 
still difficult to identify malicious flows that exhibit “transient” 
behaviors such as “mice” flows. To deal with such scenarios, 
we believe that we can use our approach to detect the attacks at 
packet level instead of flow level. Indeed, our extended results 
[7] indicate that high detection accuracy was achieved using a 
collaborative distributed detection mechanism. 

In our on-going efforts, we are implementing the 
shrew-filtering algorithm on the DETER test-bed to evaluate 
this work in an environment closer to the reality [9], [10]. With 
this practical study as the background, we can then extend the 
shrew-filtering algorithm and hypothesis test framework based 
detection methodology to address other types of DDoS attacks 
that present variant patterns in frequency domain. 

Essentially, all Internet traffic flows could be abstracted and 
processed as continuous periodic signals in time domain. If a 
frequency “spectrum” of Internet traffic flow mix is available, 
the frequency domain processing technology could facilitate 
the traffic analysis process efficiently without incurring much 
extra burden to the routers. 

 
(a) Distributions of NCAS at K-point 

 

 
(b) Throughput under 3 sampling times: 

1, 3 and 5 seconds 
 

Fig. 10. Effects of sampling lengths on the TCP and shrew throughput. 
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