
Breaking and Fixing the Self Encryption Scheme
for Data Security in Mobile Devices

Paolo Gasti
DISI - University of Genoa

Via Dodecaneso 35, 16146 Genova, Italy
Email: gasti@disi.unige.it

Yu Chen
State University of New York

Binghamton, NY 13902
Email: ychen@binghamton.edu

Abstract—Data security is one of the major challenges
that prevents the wider acceptance of mobile devices,
especially within business and government environments.
It is non-trivial to protect private and sensitive data
stored in these devices due to the limited resources and
computing power, particularly when they fall in the hand
of an adversary. Previously Chen and Ku proposed a
lightweight data encryption and storage scheme named
Self-Encryption (SE) to meet the challenge. However, our
recent research revealed that there are critical weaknesses
existing in SE. This paper presents the detailed analysis of
the weaknesses of SE scheme and proposes a solution to
remove the flaws in SE. Through real-world measurements
on top of the iPhone platform, we verified the effectiveness
of our proposal.

Index Terms—mobile computing; pervasive computing;
data security; Self-Encryption; stream ciphers; smart-
phone; PDA; iPhone

I. INTRODUCTION

There is little doubt that Pervasive Computing [1] is
becoming an integral part of everyday life. The social
consequences of this development are profound [2], and
the technological challenges posed by this paradigm are
complex and interesting (see for example [3], [4]). One
of these challenges is maintaining data privacy for the
users. Portability makes mobile devices prone to be
stolen or lost. These devices usually carry sensitive busi-
ness or private information. Government employees store
classified documents on their mobile devices [5]. Corpo-
rate users save confidential files, PINs and passwords
on their devices. Users keep photos, phone numbers,
personal appointments and other private information in
their PDAs or smartphones.

As a consequence, the content of such devices should
be protected from unauthorized access. However it is
desirable that this protection does not introduce a sub-
stantial computational overhead, which would reduce

both the performance of mobile devices and their battery
life – and therefore their usefulness.

The Self-Encryption (SE) Scheme for Data Security
in Mobile Devices was introduced by Chen and Ku in
2009 [6]: in their paper they have investigated wether it is
possible to implement a lightweight encryption algorithm
which provides data confidentiality by exploiting the
availability of a secure connection with a central server.
The server is used to store a small amount of data,
required to decrypt the confidential information. In case
of loss of the device, the access to the company server
is temporarily revoked.

Unfortunately, we discovered that SE possesses some
critical weaknesses. In this paper we illustrate our dis-
coveries about the vulnerabilities of the scheme. We also
suggest a way to take advantage of the ideas introduced
with SE using standard tools in order to provide an
efficient and strongly secure encryption scheme. We
show that this approach can be a viable solution in
processing-power and battery constrained environments
through some real-world measurements.

Organization of the paper: In the next section we
illustrate how mobile devices vendors currently protect
the data stored in mobile devices. In Section III we show
why SE is not secure and in Section IV we show how
the ideas behind SE can be used to construct a secure
and efficient scheme. We conclude in Section V.

II. RELATED WORK

There are currently many different approaches em-
braced by different vendors in order to protect mobile
users from data theft. Corporate oriented platforms, such
as the E series from Nokia, Windows Mobile from
Microsoft and Blackberry from RIM offer a features
called remote wipe [7]; more recently, the same feature is
starting to appear on consumer oriented platforms, such
as the iPhone from Apple and the Pre from Palm. The

remote wipe feature is simple and, at first glance, seems
also effective: in case of loss of the device, the owner can
issue a specific command, which tells the device to erase
all the stored data. Once its content has been securely
erased, the device is completely useless for an adversary
who is interested in obtaining confidential information.

A skilled adversary, however, can easily overcome this
kind of protection by simply applying standard forensics
procedures: she can remove, when possible, the memory
card containing the sensitive data, she can remove the
battery or she can use a faraday shielding bag to stop the
device from communicating with the network. Therefore,
we consider the remote wipe approach appropriate only
when the target of the theft is the devices itself, and not
the information it contains.

Most devices provide encryption tools in order to pro-
tect the information contained in their memory. There are
currently two approaches: encrypting the whole content
of the device or providing a small encrypted storage area
for confidential information. We believe that encrypting
the whole content of a mobile device may not be a
good choice: compared to a desktop or laptop processor,
an embedded CPU is computationally much weaker.
Encrypting the whole content of the device introduces
unnecessary delays every time the system accesses to
a non-confidential file. Performing a decryption (and,
in some cases, also an encryption) at every access of
the flash memory can seriously reduce the battery life
[8], making this option unattractive for the end user.
Moreover, desktop operating systems mandate the use
of whole disk encryption even to protect just a small
subset of sensitive data, because usually the operating
system’s metadata can reveal information – and often
parts of the content – about sensitive files [9]. This
threat does not seem to be as relevant in mobile devices.
Many devices provide a small encrypted storage space to
store confidential information. This functionality, often
referred to as “mobile wallet” [10], takes care of storing
user’s passwords and other confidential information such
as short notes or credit card numbers. However this
storage space does not support arbitrary file formats. In
addition, both full-disk encryption and “mobile wallet”
base their security on the strength of the password chosen
for the encryption. A short password would make brute
force attacks feasible, and would therefore render the
protection ineffective. On the other hand, choosing a
long and complex password would force the users to
struggle with space constrained input devices, such as
touch screens or small keyboards.

A. The Self-Encryption Scheme

The idea behind SE is to efficiently encrypt selected
sensitive files using a short PIN, while achieving the
same security as using a high-entropy password. In order
to achieve this goal, SE exploits the availability of a
secure remote server which can store some information.
SE does not require any TPM-enabled device and can
be easily implemented as a user-space application on
most smartphone. Unfortunately, we discovered that the
encryption algorithm used in SE does not guarantee data
privacy.

Since the main purpose of this paper is to give a de-
tailed analysis of the weaknesses of the Self-Encryption
Scheme, we would like to give a detailed description
of the scheme itself. Therefore, we define below the
probabilistic polynomial-time algorithms for parame-
ter generation (Gen), decryption (Dec) and encryption
(Enc) which compose the Self-Encryption Scheme.

Let G be a pseudorandom generator and H a collision-
resistant hash function. The Self-Encryption Scheme is
defined as follows:

Gen: on input 1n, chose k ← {0, 1}n uniformly at
random and output it as the PIN.

Enc: takes in input a PIN k ∈ {0, 1}n, a message m ∈
{0, 1}∗, ∆ ∈ [0, 1], 1l and a security level SL ∈ N. Then
it encrypts the message m as follows:
• choose a nonce v ← {0, 1}l and set s = H(k, v)
• if SL > 0, set j = |m| · SL · ∆. Otherwise set
j = 256

• set R as the first j · log2(|m|) bits of the output of
G(s)

• split R in j values r0, . . . , rj−1 such that every value
ri has a length of log2(|m|) bits

• for i = 0 to j, set ri = ri mod (|m| − i)
• construct a keystream ks ∈ {0, 1}j where the i-th

bit of ks is equal to the ri-th bit of m and mark
each bit ri on the message

• construct a plaintext string pl ∈ {0, 1}|m|−j by
inserting the bit of the message that were not
marked in the previous step

• output ks, v and the ciphertext c as c = pl ⊕ ks.

Dec: takes in input a PIN k, a ciphertext c, a keystream
ks, ∆, SL and a nonce v. Then it decrypts the ciphertext
c as follows:
• set s = H(k, v)
• calculate pl = c⊕ ks
• if SL > 0, set j = |m| · SL · ∆. Otherwise set
j = 256

• set R as the first j · log2(|m|) bits of the output of
G(s)

• split R in j values r0, . . . , rj−1 such that every value
ri has a length of log2(|m|) bits

• for i = 0 to j, set ri = ri mod (|m| − i)
• output m ∈ {0, 1}|ks|+|pl| where, for i = 0 to j the
rj-th bit of m is equal to the i-th bit of ks and
where the remaining bits of m are set as the bits in
pl.

The keystream ks is saved on the secure server after
the encryption, while v, c, SL and ∆ are stored on
the device. ks must be retrieved from the secure server
before running the decryption algorithm.

In the security analysis we model the secure server
used to store the keystream as completely impenetrable,
i.e. by not providing the adversary the information that
the secure server protects.

III. BREAKING THE SELF-ENCRYPTION SCHEME

In this section we recall first the notion of chosen
plaintext attack (CPA). [6]. Next, we show that the
scheme is not secure since it succumbs against a chosen
plaintext attack and other simple real-world attacks.

A. IND-CPA Security

The weakest reasonable security notion commonly
accepted for a practical encryption scheme is IND-CPA
security. This property is often defined through a game
played by a challenger and an adversary A. The basic
idea behind the IND-CPA game is that A is allowed
to ask for encryptions of multiple messages chosen
adaptively and then choose a pair of messages m0 and
m1 and have the challenger to encrypt one of them
chosen randomly. The adversary wins if she can correctly
guess which message was encrypted by the challenger.
Formally, the standard IND-CPA game is defined as
follows:

Setup: The challenger runs Setup(1κ) to generate the
encryption key k.
Phase 1: The adversary A obtains encryptions of any
messages m ∈ Mk of its choice, where Mk is the
message space for the encryption algorithm Enc under
key k.
Challenge: A specifies two challenge messages
m0,m1 ∈ Mk and sends them to the challenger. The
challenger chooses a random bit b ∈ {0, 1}. If b = 0, it
returns Enck(m0) to A; otherwise, it returns Enck(m1)
to A.

Phase 2: The adversary can obtain more encryptions of
messages from the message space.
Guess: The adversary outputs a bit b′ ∈ {0, 1} as its
guess for b. A wins the game if b′ = b.
The advantage of adversary A winning the above game
is defined as AdvIND-CPA

A = |Pr[b′ = b]− 1/2|.
An encryption scheme E = (Setup,Enc,Dec) is said

to have indistinguishable encryptions the under chosen
plaintext attack if for every polynomial p, polynomial-
time adversary A, and all sufficiently large κ it holds that
AdvIND-CPA

A < 1
p(κ) .

B. The Attack

The Self-Encryption scheme presented above is not
secure against a chosen plaintext attack. Let A be an
adversary who plays the chosen plaintext attack game
against the challenger. A skips Phase 1 of the IND-
CPA game and selects two same-length messages m0

and m1 for the Challenge phase, where m0 is a random
bit string and m1 is a string in which every bit is set
to 1. Then A sends m0 and m1 to the challenger. The
challenger chooses a random bit b ∈ {0, 1} and returns
the ciphertext for the encryption of mb to A.

If b = 1 then the ciphertext is the encryption of m1:
the challenger picks a pseudo-randomly chosen subset
of the bits of m1 to form the keystream ks. Since every
bit of m1 is set to 1, all the possible keystreams have
all their bits set to 1. Note that also the bits that were
not chosen for the keystream, and therefore composing
the plaintext pl, are all set to 1. As a consequence, no
matter which PIN, nonce, security level or ∆ is chosen
by the adversary, all the bits of the ciphertext obtained
by XORing pl with ks are always set to 0.

Instead, if b = 0, the ciphertext will look completely
random to the adversary since both the keystream and
the plaintext are two random bit strings.

Therefore, A outputs “b′ = 1” if all the bits in the
ciphertext are set to 0, and “b′ = 0” otherwise. A
outputs a value b′ = b with very high probability, more
specifically

Pr[b′ = b] = 1− negl(| c |)

where negl(·) is a negligible function. For this reason, SE
does not have indistinguishable encryption under chosen
plaintext attack.

Note that the proposed attack works in constant time in
the length of the PIN, the size of the nonce and the value
SL: the adversary distinguishes between encryptions of
m0 and encryptions of m1 by simply matching the
ciphertext with a known string, i.e. 0|c|.

C. Statistical Bias and Full Plaintext Recovery

We showed in the previous section that SE is not
CPA-secure. At first, the attack against the CPA security
of SE may seem unrealistic and its effect may be
underestimate, especially if we keep into account the se-
curity/speed tradeoff that was considered when designing
SE. However, we found that SE is vulnerable to even
more devastating attacks, which are discussed here. In
this section we show that the bits in the ciphertext c
are usually not uniformly distributed in {0, 1}, and that
it is easy to mount a ciphertext-only attack, i.e. retrieve
meaningful information about the underlying message by
just observing the ciphertext.

The keystream is generated by uniformly choosing
j bits from the message m, therefore the bits in the
keystream tend to follow the same distribution as the
bits in the message m. Let us denote with str[i] the i-th
bit of a bit string str. We have that

Pr [c[i] = 0] = Pr [pl[i] = 1] · Pr [ks[i] = 1]

+ Pr [pl[i] = 0] · Pr [ks[i] = 0]

Whenever the bits of the message are non-negligibly
biased towards a specific value, the bits of the ci-
phertext have a non-negligible bias as well. Therefore
the encryption scheme lacks the property of diffusion
[11]. A uniformly distributed keystream and a uniformly
distributed output are a fundamental requirement for any
secure stream cipher [12].

Another serious problem with this scheme is that
the keystream can be shorter than the plaintext. In this
case, the keystream must be re-used within the same
encryption. This has devastating consequences, since it
fails in hiding the structure of the message [11] and can
lead to a recovery of the plaintext by just observing
the ciphertext [12]. Let us give a simple example of
this: let m be an XML file containing passwords and
other personal information, such as credit card numbers.
Since the information contained in this file are very
sensitive, the user encrypts m with SE, producing the
ciphertext c. Usually password manager software saves,
together with the password, also the username, URL,
a title for the entry, creation, access and modification
dates and some notes. Thanks to this and the verbosity
of the XML language [13], a password file can easily
surpass 128KB in size. For simplicity we set SL = 0
and the size of m to 128KB. The keystream size is there-
fore 256 bits, which means that 256 bits are randomly
extracted from the message. XML files usually start
with the same preamble, i.e. <?xml version="1.0"

encoding="UTF-8"?>. This string, which is of
course known to adversary, has a length of 38 bytes
which correspond to 304 bits1. An adversary can cal-
culate the XOR of the first 256 bits of c with the first
256 bits of the XML preamble, obtaining the whole
keystream. The keystream obtained is correct if none of
the first 256 bits of m were chosen for the keystream.
In the example above, the adversary obtains the correct
keystream with a probability of about 94%. If some
of the first 256 bits of m have been chosen for the
keystream, the adversary can still reconstruct it as soon
as at least 256 out of the 304 known bits are not
chosen. This happens with overwhelming probability in
the example above.

After obtaining the keystream, the adversary calcu-
lates the plaintext by XORing the keystream with the
ciphertext. Thanks to the redundancy of XML files, it
is very easy to efficiently reconstruct m, i.e. re-inserting
the keystream bits in the appropriate positions, from just
the keystream and the plaintext without knowing the
PIN. We point out that increasing the size of SL does
not prevent this kind of attack, unless half of the bits
composing the XML file or more is used as keystream.
However, in this case, the adversary has a lower success
probability (but still non negligible) and longer running
time. The attack is therefore well into the realm of
feasibility.

Message integrity is another issue that wasn’t ad-
dressed by the original SE paper. We believe that SE
should provide data integrity, since it protects from a
class of attack which are very realistic with mobile de-
vices: imagine that an adversary can modify an encrypted
message in a way that this modification is not detectable
by the user. If this adversary can access the device, even
for a limited time, she can alter the content of arbitrary
sensitive files. The user will not notice this attack, and
will trust the content of such files. Since SE does not
provide any method for message authentication, when an
adversary flips a bit of the ciphertext, the corresponding
bit in the plaintext will be flipped. The adversary can
usually guess the position of a specific plaintext bit in
the ciphertext with very high probability.

For all these reasons we strongly recommend to avoid
the use of SE in any implementation.

1The known preamble is usually longer than 304 bits, since the
structure of the XML file is known as well and therefore the adversary
can correctly predict which XML tag is the root and wich tags are
its first children. In the case of the KeePassX [14] XML format, for
example, the adversary knows the first 464 bits of the password file.

IV. FIXING THE SELF-ENCRYPTION SCHEME

We think that the core idea of the Self-Encryption
scheme, i.e. exploiting the availability of a secure server
not accessible to the adversary in order to strengthen
the encryption, is brilliant and can solve some of the
problems which currently affect mobile device security.

Mobile devices are feature-crippled if compared to
their desktop counterpart. Processing power and bat-
tery capacity limitations do not allow the execution of
complex tasks, and the limits imposed by their input
interfaces are well known. However, the advances in
embedded processors and the availability of fast stream
ciphers, such as RC4 [15], Rabbit [16] or Salsa20 [17],
make the use of such ciphers viable on resource con-
strained platforms. We believe that such ciphers can be
used as an efficient building block for a strongly secure
encryption scheme, and we detail one of the possible
constructions in the following sections.

A. The RC4 Stream Cipher

Stream ciphers are well known for their high speed
and small memory footprint compared to block ciphers.
Our interest goes towards RC4, a small pseudo-random
generator, due to its fame and widespread availability.

RC4 was introduced in 1987 by Ron Rivest [15].
Today, among other uses, it is one of the available ciphers
for SSL/TLS [22] (secure socket layer / transport layer
security). It is composed of a key scheduling phase,
where the secret key – typically of length between 40
and 256 bits – is used to initialize an internal state. The
stream sequence is then produced by outputting specific
values from the internal state, which is updated after each
byte of output is produced. Unlike many other stream
ciphers, such as those in eStream [23], RC4 does not take
an initialization vector together with the key. Therefore
each implementation must specify how to combine the
initialization vector and the key in order to generate each
time a different RC4 keystream. A survey of some of
the approaches to combine the key and the initialization
vector is given in [24].

RC4 is widely considered secure when used appro-
priately. Specific care must be invested in order to
make sure that the pseudorandom generator is used
properly, since “plain” RC4 is now known to have some
weaknesses. For one, the first few bytes of its output are
known to be biased [25]. Therefore, when RC4 is used,
the first 128 or so bytes of its output should be discarded.
Together with this weakness, there are resynchronization
problems (see for example [26] and [27]). We assume
that the implementation of a systems which uses RC4

takes the appropriate countermeasures against known
weaknesses.

B. Ciphers Performances on Mobile Devices

In order to determine the performance impact of
encrypting documents on the device using a standard
cipher, we measured the speed of some widely used
stream and block ciphers on a modern smartphone.

Our testbed is the Apple iPhone 3G. Released in 2008,
it is an interesting device, since it is a full Unix machine
in a very small package. It is powered by a 416MHz
Samsung 32-bit RISC CPU, which is a modern low-
powered in-order CPU based on the ARM instruction set,
rated 0.45 mW/MHz (with cache), with 16KB of level 1
instruction cache and 16KB of level 1 data cache [18].
The iPhone 3G comes with 128MB of on-board RAM.
ARM based CPUs are currently the most widely used
CPUs in mobile devices, accounting for approximately
90% of all embedded 32-bit RISC processors. Similarly
clocked or even faster ARM-based processors can be
found on many Nokia E and N series smart phones,
Microsoft Zune, Nokia N800 and N810 tablet, Mo-
torola RIZR, most Windows Mobile smartphones, Palm
Pre, Samsung Omnia, Blackberry devices, and Google’s
Android-based devices, just to cite some.

We were able to install OpenSSL [19] on the iPhone
in order to perform some tests. OpenSSL is a well known
open source library which provides efficient implementa-
tions of many symmetric and asymmetric cryptographic
algorithms, together with various utility functions. Since
the only stream cipher available with OpenSSL is RC4,
we were unable to compare it with other stream ciphers
like Rabbit or Salsa20 at this time. However, an im-
plementation which uses OpenSSL as a cryptographic
library would necessarily have to use RC4, therefore
we think that our measurements are meaningful. We
compared RC4 with the AES and DES block ciphers
using a 128-bit and a 56-bit key respectively, in order to
provide reference values. The performance figures given
below are obtained using OpenSSL 0.9.8k.

TABLE I
PERFORMANCES MEASUREMENTS ON THE TEST PLATFORM. THE
RESULTS ARE EXPRESSED IN KILOBYTES PER SECOND FOR THE
SPECIFIED PLAINTEXT SIZE. THE BLOCK CIPHERS ARE USED IN

CBC MODE.

64 Bytes 256 Bytes 1 KB 8 KB
RC4 19,847 20,438 21,294 20,934
AES-128 5,303 5,504 5,740 5,611
DES 3,492 3,559 3,681 3,623
Triple DES 1,269 1,324 1,266 1,285

Among the ciphers provided by OpenSSL, RC4 is
clearly the best solution for a mobile device: it provides
adequate performances for most tasks and outperforms
the implementations of all the tested block ciphers. This
translates into low latencies when accessing encrypted
files and lower power consumption – and therefore
longer battery life – compared to block ciphers.

The iPhone 3G also provides UMTS [20] connec-
tivity up to 3.6 Mbps and WiFi 802.11b/g up to 54
Mbps. UMTS connectivity is provided by the Infineon
S-Gold3H [21] chip. The power consumption of this chip
in UMTS mode is rated about ten times higher than the
power consumption of the main processor, therefore in
our solution we try reduce the data exchanged with the
secure server to a minimum.

C. SE as a Key Management Tool

In order to fix SE’s weaknesses, we briefly outline a
way to exploit a secure remote server as a key man-
agement device. We focus primarily on two important
aspects: i) users, especially mobile users, clearly prefere
to remember and type a short PIN instead of a long
complex password, and ii) mobile devices usually have
limited input interface. This makes long and complex
passwords – such us the ones including symbols and
punctuation – difficult to type.

No matter how strong the encryption algorithm is,
short and simple passwords are the weakest link when
protecting encrypted sensitive files. Therefore we exploit
the remote secure server to store part of the secret
information associated with each encrypted file. The key
used to encrypt a specific document is generated from
this secret information and a user PIN. The user must
be authenticated to the secure server in order to retrieve
this secret. We suggest to minimized the interaction with
the secure server because, as we have shown before,
transmitting and receiving information through a wireless
network is the major source of power consumption and
is much slower than decrypting a ciphertext with a fast
cipher, e.g. RC4.

Similarly to SE, here we want to allow a user to
choose which files are stored as encrypted in the devices
storage space. The algorithm we propose to encrypt local
files taking advantage of a remote secure storage is as
follows: after selecting a file to encrypt, the user specifies
a PIN. The device then selects a random secret s, an
initialization vector IV and a random file identifier ID.
The lengths of s, IV and ID must be appropriate, e.g.
128 bits for s and IV and 80 bits for ID. In this way
we can guarantee that the secret is hard to guess for an

adversary, that the file identifier is unique for a specific
user and that a particular value for the initialization
vector is not used more than once.

The encryption key k for the selected file is generated
as k = H(s || PIN), where H : {0, 1}∗ → {0, 1}|s| is
a collision resistant hash function. The file is encrypted
using the RC4 stream cipher with key k and initialization
vector IV and saved on the device, together with the
file identifier ID and IV . The secret s and the file
identifier are sent to the secure server through a secure
and authenticated connection and then deleted from the
device. In this way the secure server can associate
s with the file identifier, and can efficiently respond
to subsequent authenticated requests from the mobile
device.

When a user wants to decrypt a specific file, she enters
the PIN and logs in through a secure and authenticated
connection to the company server. Then she requests
the secret corresponding to the encrypted file’s ID. The
server responds with s, which is then used together with
the PIN to reconstruct the key k. The secret s and the PIN
are immediately removed from the main memory of the
device. A copy of the key k is temporarily saved in the
device in order to prevent the need for further requests
to the server in case the user wants to modify and re-
encrypt the confidential document – in which case a new
initialization vector is also chosen. After closing the file,
the device deletes the unencrypted version from its mem-
ory, together with the key k. The use of a different secret
for each encrypted file reduces the information exposure
in case the mobile device is snatched from the hands
of a user while she is viewing a sensitive document.
In this case the adversary can see the file while it is
in its unencrypted form. However, the adversary will
not be able to obtain, even knowing a specific k, any
meaningful information about the other encrypted files,
their encryption keys or the PIN, since the secrets saved
on the secure server are chosen independently at random
for each file.

Mobile devices need to interact with the secure server
in order to be able to decrypt confidential files. Therefore
access policies can be enforced by the server admin-
istrator. As an example, the administrator can prevent
all users from accessing sensitive documents outside
office hours, or disallow a specific user from viewing
confidential files when she’s on vacation.

Together with confidentiality, the scheme should pro-
vide integrity by associating a message authentication
code [12]. The key for the message authentication code
can be generated by applying a deterministic function to

the key used for encryption and the PIN, such as hashing
them together.

D. Network Related Considerations

Exploiting the availability of a remote secure server
requires a secure channel between the mobile device and
the secure server. Recovering the messages exchanged
between the mobile device and the secure server would
render the secure server useless: the adversary would be
able to gather most of the information needed to decrypt
the files on the device, and will just need to guess the
PIN – which is supposed to be easier to guess than the
secret.

Great care must be used to authenticate both the server
and the mobile devices. Due to the wireless nature of the
connection of mobile devices, the adversary may have
complete control over the network used by the device.
The adversary can therefore alter messages between the
device and the secure server at her will. As an example,
a man in the middle attack can be a realistic threat if
the right countermeasures are not taken. Therefore the
connection between the device and the server must be
protected using an encrypted and authenticated channel.

There are many well known and well studied solutions
for this problem. The device can be connected to the
company network through a Virtual Private Network
(VPN), which takes care of providing the required au-
thenticated and encrypted channel. One protocol that is
commonly used to build a VPN is IPsec [28], [29].
However, as pointed out in [30], great care must be
taken when implementing an IPsec based VPN in order
to provide authentication. Most modern smart phones –
such as Windows Mobile-based phones, Google’s An-
droid phones and the iPhone – already provide support
for VPNs based on IPsec.

Another way to build a secure and authenticated
connection from the device to the remote server is
to use an end to end SSL/TLS [22] connection. The
main advantage of this approach is that all the “Internet
enabled” smartphones already support SSL and TLS
protocols natively.

In order to be able to open an encrypted file, the
mobile device must be able to connect with the secure
server. The availability of such server becomes therefore
crucial, as well as the availability of a network con-
nection to the server. The techniques to provide high
availability and ubiquitous connectivity are out of the
scope of this paper.

V. CONCLUSIONS

It is impending to develop a security scheme to keep
confidentiality and integrity of sensitive/private data in
the network-based distributed data storage applications.
However, it is non-trivial to design a robust solution.

In this paper, we studied the Self-Encryption Scheme,
and revealed that although the main idea and the frame-
work of SE are promising, the scheme does not guarantee
data confidentiality. To prove this, we gave an example
where an adversary can successfully recover the content
of an encrypted file without the knowledge of any secret
information.

Then we proposed some ideas in order to construct
a scheme which can successfully address data privacy
problems. We verified the feasibility of our ideas by mak-
ing a performance analysis which involves experiments
on a popular mobile platform.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous re-
viewers for their insightful comments.

REFERENCES

[1] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm
for the 21st century,” Computer, vol. 36, pp. 25–31, Mar 2003.

[2] M. Arikawa, S. Konomi, and K. Ohnishi, “Navitime: Supporting
Pedestrian Navigation in the Real World,” Pervasive Computing,
IEEE, vol. 6, pp. 21–29, July-Sept. 2007.

[3] D. Saha, A. Mukherjee, and S. Bandyopadhyay, Networking
Infrastructure for Pervasive Computing: Enabling Technologies
and Systems. Norwell, MA, USA: Kluwer Academic Publishers,
2002.

[4] J. Cornwell, I. Fette, G. Hsieh, M. Prabaker, J. Rao, K. Tang,
K. Vaniea, L. Bauer, L. Cranor, J. Hong, B. McLaren, M. Re-
iter, and N. Sadeh, “User-controllable security and privacy
for pervasive computing,” in Mobile Computing Systems and
Applications, 2007. HotMobile 2007. Eighth IEEE Workshop
on, pp. 14–19, March 2007.

[5] Department of the Army, Policy on Use of Government Cellular
Telephones and Personal Digital Assistant (PDA).

[6] Y. Chen and W.-S. Ku, “Self-Encryption Scheme for Data
Security in Mobile Devices,” in Consumer Communications and
Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1–5,
Jan. 2009.

[7] G. S. Punja and R. Mislan, “Mobile device analysis,” Small
Scale Digital Device Forensic Journal, vol. 2, June 2008.

[8] MP3 Insider: The truth about your battery life,
http://www.mp3.com/features/stories/3646.html.

[9] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble,
T. Kohno, and B. Schneier, “Defeating Encrypted and Deniable
File Systems: TrueCrypt v5.1a and the Case of the Tattling
OS and Applications,” in HOTSEC’08: Proceedings of the 3rd
conference on Hot topics in security, (Berkeley, CA, USA),
pp. 1–7, USENIX Association, 2008.

[10] Nokia Press Release: Nokia to introduce a
mobile wallet application with the Nokia 6310,
http://press.nokia.com/PR/200109/834842_5.html.

[11] C. E. Shannon, “Communication Theory of Secrecy Systems,”
Bell Systems Technical Journal, vol. 28, pp. 656–715, 1949.

[12] J. Katz and Y. Lindell, Introduction to Modern Cryptography.
Chapman & Hall/CRC, 2007.

[13] C. J. Augeri, D. A. Bulutoglu, B. E. Mullins, R. O. Baldwin,
and L. C. Baird, III, “An analysis of XML compression effi-
ciency,” in ExpCS ’07: Proceedings of the 2007 workshop on
Experimental computer science, (New York, NY, USA), p. 7,
ACM, 2007.

[14] KeePassX, a Cross Platform Password Manager,
http://www.keepassx.org/.

[15] R. Rivest, The RC4 Algorithm. RSA Data Security.
[16] M. Boesgaard, M. Vesterager, and E. Zenner, “The rabbit stream

cipher,” pp. 69–83, 2008.
[17] D. J. Bernstein, “Salsa20 design.”
[18] The ARM ARM1136J(F)-S CPU Technical Specifications,

http://www.arm.com/products/CPUs/ARM1136JF-S.html.
[19] OpenSSL, http://www.openssl.org.
[20] K. Richardson, “Umts overview,” Journal of Electronics and

Communication Engineering, 2000.
[21] Infineon X-Gold 608/XMM 6080 datasheet,

http://www.infineon.com/dgdl/X-GOLD608_XMM6080.pdf?
folderId=db3a304312fcb1bc0113000c158f0004&fileId=
db3a30431936bc4b011957c66fee3850.

[22] E. Rescorla, Ssl and Tls. Boston: Addison-Wesley, 2001.
[23] Network of Excellence in Cryptology

ECRYPT. Call for stream cipher primitives,
http://www.ecrypt.eu.org/stream/.

[24] E. Zenner, “Why IV Setup for Stream Ciphers is Diffi-
cult,” in Symmetric Cryptography, no. 07021 in Dagstuhl
Seminar Proceedings, (Dagstuhl, Germany), Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.

[25] I. Mantin and A. Shamir, “A Practical Attack on Broadcast
RC4,” in Proc. of FSE’01, pp. 152–164, Springer-Verlag, 2001.

[26] I. Mantin, “A Practical Attack on the Fixed RC4 in the WEP
Mode,” in ASIACRYPT 2005, pp. 395–411, 2005.

[27] I. Mantin, “Predicting and Distinguishing Attacks on RC4
Keystream Generator,” in EUROCRYPT 2005, pp. 491–506,
2005.

[28] N. Doraswamy and D. Harkins, IPSec: The New Security Stan-
dard for the Internet, Intranets, and Virtual Private Networks.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[29] S. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W.
Ritchey, and S. R. Sharma, “Guide to IPsec VPNs,” NIST
Special Publication 800-77 (draft), January 2005.

[30] K. G. Paterson and A. K. L. Yau, “Cryptography in Theory and
Practice: The Case of Encryption in IPsec,” in EUROCRYPT
2006, pp. 12–29, 2006.

