Prof. Masatsugu Sei Suzuki
Department of Physics, SUNY-Binghamton

This is a Prof. Masatsugu Suzuki's personal web page, where his lecture notes are posted.

Prof. Suzuki's official page:
Research Information
Publication List
Advisors & Collaborators

Lecture Notes:
General Physics
Computational Physics-about
Computational Physics-contents
Method of Theoretical Physics
Modern Physics
Solid State Physics
Quantum Mechanics - Graduate course
Quantum Mechanics I
Quantum Mechanics II
Senior Laboratory
Statistical Thermodynamics

Lecture Notes on Modern Physics

I taught the Phys.323 (Modern Physics) in Fall 2011. This course is usually taught for students who just have finished the Phys.131 and 132 (Introductory Physics) in the SUNY at Binghamton. In Phys.131 and 132, we do not teach the modern physics (we teach the simple case of the special relativity). The number of students enrolled in the Phys.323 was 30. My lecture notes are presented here. In the class, of course, the entire topics have not been covered because of such limited times. Although my lecture notes are far from completeness, it is my hope that this notes may be useful for physics students who want to understand the essence of physics. While preparing these lectures notes, I must confess that I really enjoyed studying physics using the Mathematica.

I used a text book of Modern Physics for Scientists and Engineers, Third edition, Stephen T. Thornton and Andrew Rex (Brooks/Cole Cengage Learning). Selected topics of Chapters (between Chapters 2 and 10) were taught. I also adopted the system of the WebAssign as the homeworks (some of problems chose from the textbooks. The homeworks for each chapter were sloved by students using the internet.

Note that students need knowledge of quantum mechanics for some topics. Even if they have difficulty of understanding them at this moment, it is suggested that they could read again after they study the quantum mechanics in near future.

  0  Introduction
  1  Special relativity (review from Phys.132)
  2  Minkowski space time diagram
  3  Doppler effect
  4  Relativistic mechanics
  5  Relativity of magnetic and electric fields
  6  Compton effect
  7  Davisson and Germer electron diffraction
  7S Understanding of Davisson-Germer experiment
  8  Rutherford scattering
  9  x-ray diffraction
10  Crystal structure and reciprocal lattice
11  Black body problem
12  Radiation
13  Heisenberg's principle of uncertainty
14  de Broglie waves
15  One dimensional barrier problems
16  Bohr model
17  Schrödinger equation
18  Wave packets
19  One dimensional bound states
20  Simple harmonics
21  Quantum box
22  Hydrogen atom
23  Real hydrogen atom
24  WKB approximation (I)
25  WKB for simple harmonics (II)
26  Zeeman effect
27  Stern-Gerlach experiment
28  Periodic table and Hund's law
29  Boltzmann theory of gas
30  Bose-Einstein condensation
31  BEC in alkali atoms
32  Fermi-Dirac distribution function
33  White dwarf and neutron star
34  Superconductivity
35  Josephson effect
36  Laser physics
37  Maser physics
38  Bloch theorem and energy band
39  Electrical conductivity in metals
40  Charge density wave
41  Ferromagnetism and antiferromagnetism



((Modern Physics))

  1. S.T. Thornton and A. Rex, Modern, Modern Physics for Scientists and Engineers, 3rd edition, (Brooks/Cole Cengage Learning, 2006).
  2. R. Eisberg and R. Resnick, “Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles” (Wiley, New York, 1995).
  3. R. Resnick, Basic Concepts in Special Relativity and Early Quantum Theory (John Wiley & Sons, New York, 1972).
  4. R.A. Serway, C.J. Moses, and C.A. Moyer, Modern Physics, 3rd edition (Books/Cole-Thomson Learning, 2005).
  5. P.A. Tipler and R.A. Llewellyn, Modern Physics, 5th edition (W.H. Freeman and Company, New York, 2008).
  6. H. Haken and H.C. Wolf, The Physics of Atoms and Quanta, Introduction to Experiments and Theory (Springer-Verlag, Berlin, 2004).
  7. R.P. Feynman, R.,B. Leighton, and M. Sands, The Feynman Lectures in Physics, 6th edition (Addison Wesley, Reading Massachusetts, 1977).
  8. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004).

((General physics))

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 9th edition (John Wiley & Sons, 2011).

  2. R.A. Serway and J.W. Jewett, Jr., Physics for Scientists and Engineers with Modern Physics, 8th edition (Brooks/Cole Cengage Learning, 2010).

((Physics in general))

  1. R.E. Peierls, Surprises in theoretical physics (Princeton University Press, 1979).
  2. R.E. Peierls, More surprises in theoretical physics (Princeton University Press, 1991).
  3. L. Hoddeson and V. Daitch, True Ginus. The life and science of John Bardeen (Joseph Henry Press, Washington DC, 2001).
  4. S. Brandt, The Harvest of a Century, Discoveries of modern physics in 100 episodes (Oxford University Press, 2009).
  5. G. Greenstein and A. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett Publisher (Sudbury, MA, 1997).
  6. K.A. Peacock, The Quantum Revolution: A Histrorical Perspective (Greenwood Press (Westport, CT, 2008).

((Special relativity))

  1. J.B. Kogut, Introduction to Relativity (Academic Press, New York, 2001).
  2. A.P. French, Special Relativity (W.W. Norton, New York, 1966).
  3. C. Møller, The Theory of Relativity, 2nd edition (Clarendon Press, Oxford, 1972).
  4. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Fourth Revised English Edition (Pergamon Press, New York, 1975).
  5. W. Rindler, Introduction to Special Relativity (Clarendon Press, Oxford, 1982).
  6. R. Skinner, Rlativity for Scientists and Engineers (Dover, New York, 1982).
  7. D. Bohm, The Special Theory of Relativity (Taylor & Francis  e-Library, 2009).
  8. W. Pauli, Theory of Relativity (Pergamon Press, London, 1958).
  9. S. Bais, Very Special Relativity (Harvard University Press, 2007).


  1. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).
  2. P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York, 1966).
  3. M. Tinkham, Introduction to Superconductivity, Reprint edition (Robert E. Krieger Publishing Company, INC, Malabar, Florida, 1980).
  4. J.R. Schrieffer, Theory of Superconductivity, revised edition (Addison-Wesley, Reading, 1983).
  5. J.B. Ketterson and S.N. Song, Superconductivity (Cambridge University Press, 1999).
  6. T. Tsuneto, Superconductivity and superfluidity (Cambridge University Press, 1998).
  7. W. Buckel and R. Leiner, Superconductivity, Fundamentals and Applications, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2004).
  8. M. Suzuki and I.S. Suzuki, Ginzburg-Landau theory for superconductivity,

((Quantum mechanics))

  1. L.D. Landau and I.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977).
  2. L. Schiff, Quantum Mechanics, 3rd edition (McGraw-Hill, New York, 1968).
  3. E. Merzbacher, Quantum Mechanics, 3rd edition (John Wiley & Sons, New York, 1998).
  4. J.J. Sakurai, Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading Massachusetts, 1994).
  5. C. Cohen-Tannoudji and B. Diu, and F. Laloe, Quantum Mechanics, vol.1 and vol. 2 (John Wiley & Sons, New York, 1977).
  6. J.S. Townsend, A Modern Approach to Quantum Mechanics (McGraw-Hill, Inc., New York, 1992).
  7. D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey, 1995).
  8. R. Shankar, Principles of Quantum Mechanics, 2nd edition (Kluwer Academic/Plenum Publishers, New York, 1994).
  9. R.P. Feynman and A.R. Hibbs, , Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965). 
  10. S. Brandts, H.D. Dahmen, and T. Stroh, Interactive Quantum Mechanics (Springer-Verlag, New York, 2003).
  11. Y. Peleg, R. Pnini, and E. Zaarur, Schaum’s Outline of Theory and Problems of Quantum Mechanics (McGraw-Hill, New York, 1998).
  12. S. Tomonaga, Angular momentum and Spin (Misuzu Syobo, Tokyo, 1989) [in Japanese].
  13. S. Gaiorowicz, Quantum Physics, 3rd edition (John-Wiley & Sons, New York, 2003).
  14. J. Schwinger, Quantum Mechanics , edited by B.-G. Englert (Springer, Berlin, 2001).

((Solid State Physics))

  1. C. Kittel, Introduction to Solid State Physics, 8-th edition (John Wiley & Sons, 2005).
  2. H. Ibach and H. Lűth, Solid-State Physics, An Introduction to Principles of Materials Science, 4-th edition (Springer, 2009).
  3. J.M. Ziman, Principles of the theory of solids, 2nd edition (Cambridge University Press, 1972).
  4. R.E. Peierls, Quantum theory of solids (Oxford University Press, 1975).
  5. P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, 1995).
  6. H.P. Myers, Introductory Solid State Physics (Taylor & Francis, London, 1990).
  7. S.L. Altman, Band Theory of Metals (Pergamon Press, New York, 1970).
  8. C. Kittel, Quantum Theory of Solids, 2nd edition (John Wiley & Sons, 1987).
  9. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Harcourt College Publishers (1976).
  10. G. Grosso and G.P. Parravicini, 2nd edition (Academic Press, 2003).
  11. M.P. Marder, Condensed Matter Physics (John Wiley & Sons, New York, 2010).
  12. E. Kaxiras, Atomic and electronic structures of solids (Cambridge University Press, 2003).
  13. A. Ishihara, Condensed matter physics (Oxford University Press, 1991).
  14. J.M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, 1969).

((Classical mechanics))

  1. H. Goldstein, C.P. Poole, and J.L.Safko, Classical Mechanics, 3rd edition (Addison Wesley, San Francisco, 2002).
  2. J.M. Finn, Classical Mechanics (Infinity Science Press LLC, Hingham, Massachusetts, 2008).
  3. P. Hamill, Intermediate Dynamics (Jones and Bartlett Publisher Sudbury, Massachusetts, 2010).
  4. J.E. Hasbun, Classical Mechanics with Matlab Applications (Jones and Bartlett Publishers, Sundbury Massachusetts, 2009).
  5. C. Kittel, Mechanics, Berkeley Physics Courses vol.1 second edition (McGraw-Hill, New York, 1973).
  6. V. Barger and M. Olsson, Classical Mechanics: A Modern Perspective, 2nd edition (McGraw-Hill, New York, 1995).
  7. A.B. Pippard, The physics of vibration, vol.1 (Cambridge University Press, Cambridge, 1978).
  8. A.B. Pippard, The physics of vibration, vol.2 (Cambridge University Press, Cambridge, 1983).
  9. G.L. Baker and J.A. Blackburn, The Pendulum A case study in physics (Oxford University Press, Oxford, 2005).
  10. Jerry B. Marion, Classical Dynamics of Particles and Systems, 2nd edition (Academic Press, New York, 1970).
  11. J.R. Taylor, Classical Mechanics (University Science Book, 2005).

((Electricity and magnetism))

  1. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New York, 1999).
  2. E.M. Purcell, Electricity and Magnetism, Berkeley Physics Courses vol.2 second edition (McGraw-Hill, New York, 1985).
  3. J. Schwinger, L.L. DeRaad, Jr, K.A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Perseus Book, Reading, Massachussetts, 1998).
  4. H.C. Ohanian, Classical Electrodynamics (Infinity Science Press LLC, Hingham, Massachusetts, 2007).
  5. C.A. Brau, Modern Problems in Classical Electrodynamics (Oxford University Press, New York, 2004).
  6. D.J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, New Jersey, 1999).
  7. D. Barger and M.G. Olsson, Classical Electricity and Magnetism; A Contemporary Perspective (Allyn Bacon, Inc. Boston, 1987)
  8. H.A. Atwater, Introduction to Microwave Theory (McGraw-Hill, New York, 1962).

((Statistical physics and thermodynamics))

  1. E. Schrödinger, Statistical Thermodynamics (Cambridge University Press, 1957).
  2. L.D. Landau and E.M. Lifshitz, Statistical Physics 3rd edition, revised and enlarged, Part 1 (Pergamon Press, New York, 1980).
  3. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill New York. 1965).
  4. C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, New York, 1980).
  5. R.P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).
  6. D.J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, 1998).
  7. E. Fermi, Thermodynamics (Dover, New York, 1956).
  8. L.P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization (World Scientific, 1999).
  9. R. Kubo, Thermodynamics: An Advanced Course with Problems and Solutiuons (North-Holland Publication , Amesterdam, 1968).
  10. M. Toda, R. Kubo, and N. Saito, Statitical Mecahnics II; Equilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).
  11. R. Kubo, M. Toda, and N. Hashitsume, Statitical Mecahnics II; Non-equilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1978).


  1. A. Abragam, The Principle of Nuclear Magnetism (Oxford University Press, 1961).
  2. K. Yosida, Theory of Magnetism (Springer, 1991).
  3. J.M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2009).
  4. R.M. White, Quantum Theory of magnetism, 3rd edition (Springer-Verlag, Berlin, 2007).
  5. C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963).


  1. E. Hecht and A. Zajac, Optics (Addison Wesley, Reading, Massachusetts, 1979).
  2. M. Born and E. Wolf, Principles of Optics, 7th (expanded) edition (Cambridge University Press, 2003).


  1. R. Loudon, The Quantum Theory of Light, 2nd-edition (Clarendon Press, Oxford, 1983).
  2. M. Sargent III, M.O. Scully, and W.E. Lamb, Jr., Laser Physics (Addison-Wesley, New York, 1974).

((Atomic physics))

  1. G. Herzberg, Atomic Spectra and Atomic Structure (Dover Publication, New York, 1944).
  2. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1959).
  3. H.E. White, Introduction to Atomic Spectra (McGraw-Hill Book Company,  New York,1934)
  4. M. Born, Atomic Physics, 2nd edition (Blackie & Son Limited, London, 1937).
  5. C.J. Foot, Atomic Physics (Oxford University Press, 2005).
  6. A. Corney, Atomic and Laser Spectroscopy (Oxford University Press, 1977).
  7. C. Cohen-Tannoudji and and D. Guery-edelin Advances in Atomic Physics (World Scientific Publication, 2010). 

((Mathematical physics))

  1. G.B. Arfken, H.J. Weber, and F.E. Harris, Mathematical Methods for Physicists (Elsevier, New York, 2012).

((Lecture Notes on Advanced Laboratory))

  1. M. Suzuki, Optical pumping of 87Rb atoms  (pdf)
  2. M. Suzuki, Zeeman effect  (pdf)
  3. M. Suzuki, Faraday rotation  (pdf)
  4. M. Suzuki, Spin echo methods of nuclear magnetic resonance (NMR); (pdf)


Revised: Jamuary 10, 2015